Colloidally synthesized defect-rich \(\hbox {MoSe}_{2}\) nanosheets for superior catalytic activity

  • Md Samim Hassan
  • Atanu Jana
  • Soniya Gahlawat
  • Nimai Bhandary
  • Susnata Bera
  • Pravin P Ingole
  • Sameer SapraEmail author


Transition metal dichalcogenide (TMD) nanosheets (NSs) with defect-rich and vertically aligned edges are highly advantageous for various catalytic applications. However, colloidal synthesis of defect-rich NSs with thickness variation has been a challenging task. Here, we report a colloidal synthesis of \(\hbox {2H-MoSe}_{2}\) NSs having a large number of defects and vertically aligned edges, where the thickness is varied by changing the amount of coordinating solvent. The Se-vacancies in these NSs have introduced defect sites which are corroborated by the presence of additional vibration modes in Raman spectra. These NSs exhibit electrocatalytic hydrogen evolution reaction performances with a low overpotential (210–225 mV) at \(10\,\hbox {mA}\,\hbox {cm}^{-2}\) current density and a small Tafel slope (54–68 mV per decade). Moreover, these \(\hbox {MoSe}_{2}\) NSs are also employed as counter electrodes (CEs) for the fabrication of dye sensitized solar cells via a cost-effective and simplified procedure. The power conversion efficiencies of \(7.02 \pm 0.18\%\), comparable with Pt CE (\(7.84 \pm 0.10\%\)) could be routinely achieved. These results demonstrate a novel synthetic strategy to prepare layered TMDs with superior catalytic applications.


Transition metal dichalcogenides \(\hbox {MoSe}_{2}\) nanosheets hydrogen evolution reaction dye sensitized solar cells counter electrode 



MSH acknowledges UGC for financial support. AJ acknowledges DST-SERB for RA funding. We are grateful to Dr Nirat Ray and AIRF, JNU for the HRTEM images. SS acknowledges DST CERI Grant No. DST/TMD/CERI/C166(G) for partial financial assistance and Central Research Facility, IIT Delhi for instrument facilities. SB acknowledges the Science and Engineering Research Board (SERB), India for the financial support (Project No. PDF/2016/001182).

Supplementary material

12034_2019_1774_MOESM1_ESM.docx (3.1 mb)
Supplementary material 1 (docx 3169 KB)


  1. 1.
    Tongay S, Zhou J, Ataca C, Lo K, Matthews T S, Li J et al 2012 Nano Lett. 12 5576CrossRefGoogle Scholar
  2. 2.
    Kang J, Zhang L and Wei S H 2016 J. Phys. Chem. Lett. 7 597CrossRefGoogle Scholar
  3. 3.
    Arora A, Nogajewski K, Molas M, Koperski M and Potemski M 2015 Nanoscale 7 20769CrossRefGoogle Scholar
  4. 4.
    Xu M, Liang T, Shi M and Chen H 2013 Chem. Rev. 113 3766CrossRefGoogle Scholar
  5. 5.
    Larentis S, Fallahazad B and Tutuc E 2012 Appl. Phys. Lett. 101 223104CrossRefGoogle Scholar
  6. 6.
    Zhou X, Jiang J, Ding T, Zhang J, Pan B, Zuo J et al 2014 Nanoscale 6 11046CrossRefGoogle Scholar
  7. 7.
    Lin L, Xu Y, Zhang S, Ross I M, Ong C M and Allwood D A 2013 ACS Nano 7 8214CrossRefGoogle Scholar
  8. 8.
    Zhu Z Y, Cheng Y C and Schwingenschlögl U 2011 Phys. Rev. B 84 153402CrossRefGoogle Scholar
  9. 9.
    Gong Q, Cheng L, Liu C, Zhang M, Feng Q, Ye H et al 2015 ACS Catal. 5 2213CrossRefGoogle Scholar
  10. 10.
    Lee L T, He J, Wang B, Ma Y, Wong K Y, Li Q et al 2014 Sci. Rep. 4 4063CrossRefGoogle Scholar
  11. 11.
    Chen H, Xie Y, Cui H, Zhao W, Zhu X, Wang Y et al 2014 Chem. Commun. 50 4475CrossRefGoogle Scholar
  12. 12.
    Wang Q, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699CrossRefGoogle Scholar
  13. 13.
    Ahmad R, Srivastava R, Yadav S, Singh D, Gupta G, Chand S et al 2017 J. Phys. Chem. Lett. 8 1729CrossRefGoogle Scholar
  14. 14.
    Yin Z, Li H, Li H, Jiang L, Shi Y, Sun Y et al 2012 ACS Nano 6 74CrossRefGoogle Scholar
  15. 15.
    Jia J, Wu J, Dong J, Tu Y, Lan Z, Fan L et al 2012 IEEE J. Photovoltaics 6 1196CrossRefGoogle Scholar
  16. 16.
    Tang Y, Zhao Z, Wang Y, Dong Y, Liu Y, Wang X et al 2016 ACS Appl. Mater. Interfaces 8 32324CrossRefGoogle Scholar
  17. 17.
    Chang Y, Zhang O W, Zhu O Y, Han Y, Pu J, Chang J et al 2014 ACS Nano 8 8582CrossRefGoogle Scholar
  18. 18.
    Peng H, Wei C, Wang K, Meng T, Ma G, Lei Z et al 2017 ACS Appl. Mater. Interfaces 9 17067CrossRefGoogle Scholar
  19. 19.
    Nicolosi V, Chhowalla M, Kanatzidis M G, Strano M S and Coleman J N 2013 Science 340 1226419CrossRefGoogle Scholar
  20. 20.
    Li Y, Zhang K, Wang F, Feng Y, Li Y, Han Y et al 2017 ACS Appl. Mater. Interfaces 9 36009CrossRefGoogle Scholar
  21. 21.
    Liu Z, Li N, Zhao H and Du Y 2015 J. Mater. Chem. A 3 19706CrossRefGoogle Scholar
  22. 22.
    Xu C, Peng S, Tan C, Ang H, Tan H, Zhang H et al 2014 J. Mater. Chem. A 2 5597CrossRefGoogle Scholar
  23. 23.
    Sun D, Feng S, Terrones M and Schaak R E 2015 Chem. Mater. 27 3167CrossRefGoogle Scholar
  24. 24.
    Jung W, Lee S, Yoo D, Jeong S, Miró P, Kuc A, Heine T et al 2015 J. Am. Chem. Soc. 137 7266CrossRefGoogle Scholar
  25. 25.
    Chia X, Eng A Y, Ambrosi A, Tan S M and Pumera M 2015 Chem. Rev. 115 11941CrossRefGoogle Scholar
  26. 26.
    Kong D, Wang H, Cha J, Pasta M, Koski K, Yao J et al 2013 Nano Lett. 13 1341CrossRefGoogle Scholar
  27. 27.
    Xie J, Zhang H, Li S, Wang R, Sun X, Zhou M et al 2013 Adv. Mater. 25 5807CrossRefGoogle Scholar
  28. 28.
    Ouyang Y, Ling C, Chen Q, Wang Z, Shi L and Wang J 2016 Chem. Mater. 28 4390CrossRefGoogle Scholar
  29. 29.
    Kye J, Shin M, Lim B, Jang J, Oh I and Hwang S 2013 ACS Nano 7 6017CrossRefGoogle Scholar
  30. 30.
    Thomas S, Deepak T G, Anjusree G S, Arun T and Nair S 2014 J. Mater. Chem. A 2 4474CrossRefGoogle Scholar
  31. 31.
    Ito S, Murakami T N, Comte P, Liska P, Grätzel C, Nazeeruddin M K et al 2008 Thin Solid Films 516 4613CrossRefGoogle Scholar
  32. 32.
    Zhou X, Liu Y, Ju H, Pan B, Zhu J, Wang C et al 2016 Chem. Mater. 28 1838CrossRefGoogle Scholar
  33. 33.
    Dai C, Zhou Z, Tian C, Li Y, Yang C, Gao X et al 2017 J. Phys. Chem. C 121 1974CrossRefGoogle Scholar
  34. 34.
    Zhang Y, Zuo L, Zhang L, Huang Y, Lu H, Fan W et al 2016 ACS Appl. Mater. Interfaces 8 7077CrossRefGoogle Scholar
  35. 35.
    Chen F, Dong T, Xu T, Li X and Hu C 2011 Green Chem. 13 2518CrossRefGoogle Scholar
  36. 36.
    Jana A, Lawrence K N, Teunis M B, Mandal M, Kumbhar A and Sardar R 2016 Chem. Mater. 28 1107CrossRefGoogle Scholar
  37. 37.
    Shimao E 1967 Bull. Chem. Soc. Jpn. 630 1609CrossRefGoogle Scholar
  38. 38.
    Amgoune A and Bourissou D 2011 Chem. Commun. 47 859CrossRefGoogle Scholar
  39. 39.
    Liu Y, Yao D, Shen L, Zhang H, Zhang X and Yang B 2012 J. Am. Chem. Soc. 134 7207CrossRefGoogle Scholar
  40. 40.
    Dolai S, Nimmala P R, Mandal M, Muhoberac B B, Dria K, Dass A et al 2014 Chem. Mater. 26 1278CrossRefGoogle Scholar
  41. 41.
    Riha S C, Parkinson B A and Prieto A L 2011 J. Am. Chem. Soc. 133 15272CrossRefGoogle Scholar
  42. 42.
    Wei Y, Yang J, Lin A W H and Ying J Y 2010 Chem. Mater. 22 5672CrossRefGoogle Scholar
  43. 43.
    Goloveshkin A 2013 J. Phys. Chem. C 117 8509CrossRefGoogle Scholar
  44. 44.
    James P B and Lavik M T 1963 Acta Crystallogr. 16 1183CrossRefGoogle Scholar
  45. 45.
    Crowne F J, Amani M, Birdwell A G, Chin M L, O’Regan T P, Najmaei S et al 2013 Phys. Rev. B 88 235302CrossRefGoogle Scholar
  46. 46.
    Zhao Z, Ghorannevis Z, Chu L, Toh M and Kloc C E G 2013 ACS Nano 7 791CrossRefGoogle Scholar
  47. 47.
    Shim G W, Yoo K, Seo S B, Shin J, Jung D Y, Kang I S et al 2014 ACS Nano 8 6655CrossRefGoogle Scholar
  48. 48.
    Balasingam S K, Lee J S and Jun Y 2015 Dalton Trans. 44 15491CrossRefGoogle Scholar
  49. 49.
    Terrones H, Corro E et al 2014 Sci. Rep. 4 4215CrossRefGoogle Scholar
  50. 50.
    Samani M, Tian M et al 2014 ACS Nano 8 11567CrossRefGoogle Scholar
  51. 51.
    Samani M, Liang L et al 2016 Nano Lett. 16 5213CrossRefGoogle Scholar
  52. 52.
    Cheng L, Huang W, Gong Q, Liu C, Liu Z, Li Y et al 2014 Angew. Chem. Int. Ed. 53 7860CrossRefGoogle Scholar
  53. 53.
    Gholamvand Z, McAteer D, Harvey A, Backes C and Coleman J N 2016 Chem. Mater. 28 2641CrossRefGoogle Scholar
  54. 54.
    Deng S, Zhong Y et al 2017 Adv. Mater. 29 1700748CrossRefGoogle Scholar
  55. 55.
    Xue N and Diao P 2017 J. Phys. Chem. C 121 26686CrossRefGoogle Scholar
  56. 56.
    Poorahong S, Izquierdo R and Siaj M 2017 J. Mater. Chem. A 5 20993CrossRefGoogle Scholar
  57. 57.
    Voiry D, Yang J and Chhowalla M 2016 Adv. Mater. 28 6197CrossRefGoogle Scholar
  58. 58.
    Ye G, Gong Y, Lin J, Li B, He Y, Pantelides S T et al 2016 Nano Lett. 16 1097CrossRefGoogle Scholar
  59. 59.
    Yu Y, Huang S Y, Li Y, Steinmann S N, Yang W and Cao L 2014 Nano Lett. 14 553CrossRefGoogle Scholar
  60. 60.
    Das R, Pandey S K and Mahadevan P 2017 arXiv:1702.04535
  61. 61.
    Liu Y, Ren L, Zhang Z, Qi X, Li H and Zhong J 2016 Sci. Rep. 6 22516CrossRefGoogle Scholar
  62. 62.
    Tang C, Wang W, Sun A, Qi C, Zhang D, Wu Z et al 2015 ACS Catal. 5 6956CrossRefGoogle Scholar
  63. 63.
    Boschloo G and Hagfeldt A 2009 Acc. Chem. Res. 42 1819CrossRefGoogle Scholar
  64. 64.
    Hagfeldt A, Boschloo G, Sun L, Kloo L and Pettersson H 2010 Chem. Rev. 110 6595CrossRefGoogle Scholar
  65. 65.
    Hou Y, Wang D, Yang X H, Fang W Q, Zhang B, Wang H F et al 2013 Nat. Commun. 4 1583Google Scholar
  66. 66.
    Wu M, Lin X, Wang Y, Wang L, Guo W, Qi D et al 2012 J. Am. Chem. Soc. 134 3419CrossRefGoogle Scholar
  67. 67.
    Zheng J, Zhou W, Ma Y, Cao W, Wang C and Guo L 2015 Chem. Commun. 51 12863CrossRefGoogle Scholar
  68. 68.
    Roy-Mayhew J D, Bozym D J, Punckt C and Aksay I A 2010 ACS Nano 4 6203CrossRefGoogle Scholar
  69. 69.
    Concina I and Vomiero A 2015 Small 11 1744CrossRefGoogle Scholar
  70. 70.
    Guo J, Liang S, Shi Y, Hao C, Wang X and Ma T 2015 Phys. Chem. Chem. Phys. 17 28985CrossRefGoogle Scholar
  71. 71.
    Radich J G, Dwyer R P and Kamat P V 2011 J. Phys. Chem. Lett. 2 2453CrossRefGoogle Scholar
  72. 72.
    Nguyen Q T, Nguyen P D, Nguyen D N, Truong Q D, Kim Chi T T, Ung T T D et al 2018 ACS Appl. Mater. Interfaces 10 8659CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of ChemistryIndian Institute of Technology DelhiNew DelhiIndia

Personalised recommendations