Advertisement

Role of surface passivation on visible and infrared emission of Ge quantum dots formed by dewetting

  • M Aouassa
  • M A ZrirEmail author
  • I Jadli
  • L S Hassayoun
  • R Mghaieth
  • H Maaref
  • L Favre
  • A Ronda
  • I Berbezier
Article
  • 23 Downloads

Abstract

The dual action of oxide-related defects in the visible and infrared emission of germanium (Ge) self-assembled quantum dots (QDs) is discussed. The Ge particles were fabricated by solid-state dewetting on a thin layer of \({\hbox {SiO}}_{2}\). Subsequent surface passivation by amorphous silicon was carried out for several samples. All samples were encapsulated by \({\hbox {SiO}}_{2}\). Atomic force microscopy analysis indicates a linear relationship between the size of QDs and the initial thickness of the amorphous Ge films. The crystallization of the QDs was evidenced by transmission electron microscopy and Raman spectroscopy. Photoluminescence measurements show that the main visible emission is blue-green centred around 520 nm. The luminescence attributed to the radiative recombination of quantum-confined excitons is only observed when the surface is in-situ passivated prior to the deposition of the oxide matrix. The results of this work are helpful for optimizing the performance of the optoelectronic devices based on the infrared emission of Ge nanocrystals.

Keywords

Solid-state dewetting Ge quantum dots oxide-related defects photoluminescence 

Notes

Acknowledgements

One of the authors (M A Zrir) thanks Prof I Othman, the Director General of the AECS, for his ongoing support.

References

  1. 1.
    Canham L T 2000 Nature 408 411CrossRefGoogle Scholar
  2. 2.
    Kanoun M, Lemiti M, Bremond G, Souifi A, Bassani F and Berbezier I 2004 Superlattices Microstruct. 36 143CrossRefGoogle Scholar
  3. 3.
    Bouchier D, Yam V, Halbwax M, Nguyen L, Debarre D and Fossard F 2006 ECS Trans. 3 569CrossRefGoogle Scholar
  4. 4.
    Lee D C, Pietryga J M, Robel I, Werder D J, Schaller R D and Klimov V I 2009 J. Am. Chem. Soc. 131 3436CrossRefGoogle Scholar
  5. 5.
    Zwanenburg F A, Dzurak A S, Morello A, Simmons M Y, Hollenberg L C L, Klimeck G et al 2013 Rev. Mod. Phys. 85 961CrossRefGoogle Scholar
  6. 6.
    Efros A L and Rosen M 2000 Annu. Rev. Mater. Sci. 30 475CrossRefGoogle Scholar
  7. 7.
    Takeoka S, Fujii M, Hayashi S and Yamamoto K 1998 Phys. Rev. B 58 7921CrossRefGoogle Scholar
  8. 8.
    Wilcoxon J P, Provencio P P and Samara G A 2001 Phys. Rev. B 64 035417CrossRefGoogle Scholar
  9. 9.
    Min K S, Shcheglov K V, Yang C M, Atwater H A, Brongersma M L and Polman A 1996 Appl. Phys. Lett. 68 2511CrossRefGoogle Scholar
  10. 10.
    Rebohle L, Gebel T, von Borany J, Skorupa W, Helm M, Pacifici D et al 2002 Appl. Phys. B 74 53CrossRefGoogle Scholar
  11. 11.
    Avella M, Prieto Á C, Jiménez J, Rodríguez A, Sangrador J, Rodríguez T et al 2008 Mater. Sci. Eng. B 147 200CrossRefGoogle Scholar
  12. 12.
    Bostedt C, Van Buuren T, Willey T M, Franco N, Terminello L J, Heske C et al 2004 Appl. Phys. Lett. 84 20CrossRefGoogle Scholar
  13. 13.
    Niquet Y M, Allan G, Delerue C and Lannoo M 2000 Appl. Phys. Lett. 77 1182CrossRefGoogle Scholar
  14. 14.
    Kartopu G, Sapelkin A V, Karavanskii V A, Serincan U and Turan R 2008 J. Appl. Phys. 103 113518CrossRefGoogle Scholar
  15. 15.
    Chang S-T and Liao S-H 2009 J. Vac. Sci. Technol. B 27 535CrossRefGoogle Scholar
  16. 16.
    Fraj I, Favre L, David T, Abbarchi M, Liu K, Claude J B et al 2017 Appl. Surf. Sci. 419 476CrossRefGoogle Scholar
  17. 17.
    Takagahara T and Takeda K 1992 Phys. Rev. B 46 15578CrossRefGoogle Scholar
  18. 18.
    Maeda Y 1995 Phys. Rev. B 51 1658CrossRefGoogle Scholar
  19. 19.
    Okamoto S and Kanemitsu Y 1996 Phys. Rev. B 54 16421CrossRefGoogle Scholar
  20. 20.
    Kartopu G, Bayliss S C, Karavanskii V A, Curry R J, Turan R and Sapelkin A V 2003 J. Lumin. 101 275CrossRefGoogle Scholar
  21. 21.
    Singha A, Roy A, Kabiraj D and Kanjilal D 2006 Semicond. Sci. Technol. 21 1691CrossRefGoogle Scholar
  22. 22.
    Ko T S, Shieh J, Yang M C, Lu T C, Kuo H C and Wang S C 2008 Thin Solid Films 516 2934CrossRefGoogle Scholar
  23. 23.
    Jawad M J, Hashim M R, Ali N K, Corcoles E P and Arora Vijay K 2014 J. Electochem. Soc. 161 D801CrossRefGoogle Scholar
  24. 24.
    Kanjilal A, Lundsgaard Hansen J, Gaiduk P, Nylandsted Larsen A, Cherkashin N, Claverie A et al 2003 Appl. Phys. Lett. 82 1212CrossRefGoogle Scholar
  25. 25.
    Berbezier I, Karmous A, Ronda A, Sgarlata A, Balzarotti A, Castrucci P et al 2006 Appl. Phys. Lett. 89 063122CrossRefGoogle Scholar
  26. 26.
    Szkutnik P D, Sgarlata A, Motta N, Placidi E, Berbezier I and Balzarotti A 2007 Surf. Sci. 601 2778CrossRefGoogle Scholar
  27. 27.
    Rowell N L, Lockwood D J, Karmous A, Szkutnik P D, Berbezier I and Ronda A 2008 Superlattices Microstruct. 44 305CrossRefGoogle Scholar
  28. 28.
    Sendova-Vassileva M, Tzenov N, Dimova-Malinovska D, Rosenbauer M, Stutzman M and Josepovits K V 1995 Thin Solid Films 255 282CrossRefGoogle Scholar
  29. 29.
    Zacharias M and Fauchet P M 1997 Appl. Phys. Lett. 71 380CrossRefGoogle Scholar
  30. 30.
    Viswanathamurthi P, Bhattarai N, Kim H Y, Khil M S, Lee D R and Suh E-K 2004 J. Chem. Phys. 121 441CrossRefGoogle Scholar
  31. 31.
    Das S, Singha R K, Gangopadhyay S, Dhar A and Ray S K 2010 J. Appl. Phys. 108 053510CrossRefGoogle Scholar
  32. 32.
    Zrir M A, Saloum S, Alkhaled B and Shaker S A 2017 Surf. Sci. 659 5CrossRefGoogle Scholar
  33. 33.
    Szkutnik P D, Karmous A, Bassani F, Ronda A, Berbezier I, Gacem K et al 2008 Eur. Phys. J. Appl. Phys. 41 103CrossRefGoogle Scholar
  34. 34.
    Perova T S, Wasyluk J, Lyutovich K, Kasper E, Oehme M, Rode K et al 2011 J. Appl. Phys. 109 033502CrossRefGoogle Scholar
  35. 35.
    Wu X L, Gao T, Siu G G, Tong S and Bao X M 1999 Appl. Phys. Lett. 74 2420CrossRefGoogle Scholar
  36. 36.
    Nozaki S, Sato S, Denda A, Ono H and Morisaki H 1994 MRS Proc. 358 133CrossRefGoogle Scholar
  37. 37.
    Qin G G and Jia Y Q 1993 Solid State Commun. 86 559CrossRefGoogle Scholar
  38. 38.
    Loo R, Meunier-Beillard P, Vanhaeren D, Bender H, Caymax M, Vandervorst W et al 2001 J. Appl. Phys. 90 2565CrossRefGoogle Scholar
  39. 39.
    Dashiell M W, Denker U, Muller C, Costantini G, Manzano C, Kern K et al 2002 Appl. Phys. Lett. 80 1279CrossRefGoogle Scholar
  40. 40.
    Wang K L, Cha D, Liu J and Chen C 2007 Proc. IEEE 95 1866CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  • M Aouassa
    • 1
  • M A Zrir
    • 2
    Email author
  • I Jadli
    • 1
  • L S Hassayoun
    • 1
  • R Mghaieth
    • 1
  • H Maaref
    • 1
  • L Favre
    • 3
  • A Ronda
    • 3
  • I Berbezier
    • 3
  1. 1.Department of Physics, Laboratory of Micro-Opto-Electronic and Nanostructures (LMON)Faculty of SciencesMonastirTunisia
  2. 2.Department of PhysicsAtomic Energy Commission of Syria (AECS)DamascusSyria
  3. 3.IM2NP Faculté des Sciences et TechniquesMarseille, Cedex 20France

Personalised recommendations