Advertisement

Gel combustion synthesis of fluorine-doped tin oxide and its characteristics: applying D-optimal factorial design of experiment

  • S Malek
  • S BaghshahiEmail author
  • R Sarraf-Mamoory
  • Ali Nemati
Article
  • 18 Downloads

Abstract

Fluorine-doped tin oxide (FTO) nano-powders were synthesized by a gel combustion method. To analyse the effect of processing factors and their interactions and to achieve an equation for nano-powder particle size in terms of code factors, D-optimal factorial design was used. Stannous chloride penta-hydride, ammonium fluoride and citric acid were used to synthesize the FTO nano-powders. The structure, morphology and composition of the synthesized powders were characterized by X-ray diffraction, field emission scanning electron microscopy and X-ray photoelectron spectroscopy, respectively. The results revealed the formation of homogenous FTO nano-powders with an average particle size of 20 nm and equiaxed morphology in the concentration of precursor 0.2, citric acid to precursor molar ratio of 1 and pH of 0.5. The average particle size increased as the concentration of the precursor, citric acid to precursor molar ratio and pH increased from 0.2 to 1, 1 to 3 and 0.5 to 3, respectively. Citric acid to precursor molar ratio, concentration of the precursor and the pH had the most significant effect on the synthesis of the FTO nano-powders, respectively.

Keywords

Gel combustion FTO D-optimal factorial design solar cells 

References

  1. 1.
    Hara K, Arakawa H, Luque A and Hegedus S 2003 A Luque handbook of photovoltaic science and engineering (NY: John Wiley & Sons Ltd) p 663Google Scholar
  2. 2.
    Fortunato E, Ginley D, Hosono H and Paine D C 2007 MRS Bull. 32 242CrossRefGoogle Scholar
  3. 3.
    Li B, Huang L, Zhou M and Wu B 2014 Ceram. Int. 40 1627CrossRefGoogle Scholar
  4. 4.
    Kawashima T, Ezure T, Okada K, Matsui H, Goto K and Tanab N 2004 J. Photochem. Photobiol. 164 199CrossRefGoogle Scholar
  5. 5.
    Tatar D, Turgut G and Duzgun B 2013 Rom. J. Phys. 58 143Google Scholar
  6. 6.
    Bhardwaj A, Gupta B K, Raza A, Sharma A K and Agnihotri O P 1981 Sol. Energy Mat. Sol. C 5 39Google Scholar
  7. 7.
    Naje A N, Norry A S and Suhail A M 2013 Int. J. Innov. Res. Sci. Eng. Technol. 42 7068Google Scholar
  8. 8.
    Farrukh M A, Heng B and Adnan R 2010 Turk. J. Chem. 34 537Google Scholar
  9. 9.
    Han C H, Jousseaume B, Rascle M C, Toupance T, Cacher H and Vivier V 2004 J. Fluor. Chem. 125 1247CrossRefGoogle Scholar
  10. 10.
    Razeghizadeh A R, Rafee V and Zalaghi L 2015 Mesoscale and nanoscale physics (cond-mat.mes-hall) 142 arXiv:1502.00219
  11. 11.
    Senthilkumar V, Vickraman P and Ravikumar R 2010 J. Sol. Gel. Sci. Technol. 53 316CrossRefGoogle Scholar
  12. 12.
    Adnan R, Razana N, Rahman I A and Farrukh M A 2010 J. Chin. Chem. Soc. 57 222CrossRefGoogle Scholar
  13. 13.
    Han C H, Han S D, Gwak J and Khatkar S P 2007 Mater. Lett. 61 1701CrossRefGoogle Scholar
  14. 14.
    Yue Z, Li L, Zhou J, Zhang H and Gui Z 1999 Mater. Sci. Eng. B 64 68CrossRefGoogle Scholar
  15. 15.
    Ahmed W and Jackson M J 2009 Emerging nanotechnologies for manufacturing (UK: Elseiver Science and Technology Books)Google Scholar
  16. 16.
    Telford J K 2007 A brief introduction to design of experiments (Washington: Johns Hopkins APL Technical Digest) p 224Google Scholar
  17. 17.
    Antony J 2003 Design of experiments for engineers and scientists (Amsterdam: Elsevier Science & Technology Books)Google Scholar
  18. 18.
    Leiviskä K 2013 Introduction to experiment design (University of Oulu) p 31Google Scholar
  19. 19.
    Kehoe S, Ardhaoui M and Stokes J 2011 J. Mater. Eng. Perform. 20 1423CrossRefGoogle Scholar
  20. 20.
    Askari-Paykani M, Shayan M and Shamanian M 2014 J. Iron Steel Res. Int. 21 252CrossRefGoogle Scholar
  21. 21.
    Software Help Design-Expert Software, Version 7.1 2007 User’s guide, technical manual (Minneapolis, MN: Stat-Ease Inc.)Google Scholar
  22. 22.
    Nekouei R K, Rashchi F and Amadeh A 2013 Powder Technol. 237 165CrossRefGoogle Scholar
  23. 23.
    Sikhwivhilu L M, Pillai S K and Hillie T K 2011 J. Nanosci. Nanotechnol. 11 4988CrossRefGoogle Scholar
  24. 24.
    Li Z, Shen W, Zhang X, Fang L and Zu X 2008 Colloids Surf. A: Physicochem. Eng. Asp. 17 327Google Scholar
  25. 25.
    Bruneaux J, Cachet H, Froment M, Levart M, and Vedel J 1989 J. Microsc. Spectrosc. Electron. 14 1Google Scholar
  26. 26.
    Riahi-Noori N, Sarraf-Mamoory R, Alizadeh P and Mehdikhani A 2008 J. Ceram. Process. Res. 9 246Google Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  • S Malek
    • 1
  • S Baghshahi
    • 2
    Email author
  • R Sarraf-Mamoory
    • 3
  • Ali Nemati
    • 4
  1. 1.Department of Materials Engineering, Science and Research BranchIslamic Azad UniversityTehranIran
  2. 2.Department of Materials Science and Engineering, Faculty of EngineeringImam Khomeini International UniversityQazvinIran
  3. 3.Department of Materials EngineeringTarbiat Modares UniversityTehranIran
  4. 4.Department of Materials Science and EngineeringSharif University of TechnologyTehranIran

Personalised recommendations