Structure and luminescence properties of \(\hbox {K}_{{2}}\hbox {GdF}_{{5}}\):\(\hbox {Tb}^{3+}\) synthesized by solid-state reaction method

  • Ha Xuan Vinh
  • Nguyen Chi Thang
  • Doan Phan Thao Tien
  • Bui The HuyEmail author


\(\hbox {K}_{{2}}\hbox {GdF}_{{5}}\):\(\hbox {Tb}^{3+}\) material used in dosimetry field was synthesized by solid-state reaction method. The scanning electron microscopy image showed that the material exhibits porous surface with a very large surface area. The photoluminescence spectrum confirmed energy transfer process from \(\hbox {Gd}^{3+}\) ions to \(\hbox {Tb}^{3+}\) ions, and the luminescence of this material was entirely due to Tb ions. The high luminescent intensity at 542 nm was perfectly consistent with the sensitive wavelength range of photomultiplier tubes in the thermoluminescence (TL) reader. The TL-glow curve was very simple with the temperatures of the main peak in the range from 200 to \(230^{\circ }\hbox {C}\), and the glow-curve shape was suitable for dosimetry purposes. The TL intensities of \(\hbox {K}_{{2}}\hbox {GdF}_{{5}}\):10 mol% \(\hbox {Tb}^{3+}\) was higher than that of common \(\hbox {CaSO}_{{4}}\):\(\hbox {Dy}^{3+}\) dosimeters. The estimation on available application of the prepared material in neutron dose measurement was carried out.


\(\hbox {GdF}_{{5}}\):\(\hbox {Tb}^{3+}\) \(\hbox {Gd}^{3+}{-}\hbox {Tb}^{3+}\) ion pair energy transfer neutron dosimetry 



This work is supported by the Vietnam Academy Science and Technology on research Project VAST03.06/17-18.


  1. 1.
    Qiufeng S, Fangtian Y, Shihua H, Hongshang P, Yan H and Ye T 2014 J. Lumin. 152 138CrossRefGoogle Scholar
  2. 2.
    Deyin W, Nobuhiro K, Lei Z and Yuhua W 2010 J. Electrochem. Soc. 157 233CrossRefGoogle Scholar
  3. 3.
    Peijzel P S, Vermeulen P, Schrama W J M and Meijerink A 2005 Phys. Rev. B 71 125Google Scholar
  4. 4.
    Yanguang Q, Xiantao W, Xinyue L, Yonghu C and Min Y 2014 J. Lumin. 152 58CrossRefGoogle Scholar
  5. 5.
    Azorın J N, Khaidukov N M, Rodrıguez A S and Azorın V J C 2007 Nucl. Instrum. Methods B 263 36CrossRefGoogle Scholar
  6. 6.
    Molina P, Santiago M, Marcazzó J, Spano F, Khaidukov N and Caselli E 2011 Radiat. Meas. 46 1361CrossRefGoogle Scholar
  7. 7.
    Qian S, Huang L, Zhao S and Xu S 2017 J. Rare Earths 35 787CrossRefGoogle Scholar
  8. 8.
    Ye J, Qingping W, Hongpeng Z, Liangliang Z and Jiahua Z 2016 Ceram. Int. 42 3309CrossRefGoogle Scholar
  9. 9.
    Mares J A, Nikl M, Nitsch K, Solovieva N, Krasnikov A and Zazubovich S 2001 J. Lumin. 94–95 321CrossRefGoogle Scholar
  10. 10.
    Yong Z, Jingwen L, Ning D, Shan J, Tao Z and Jiayu L 2015 J. Non-Cryst. Solids 423–424 30Google Scholar
  11. 11.
    Xin Y S, Qing M Y, Pan G, Hong S W and Peng X 2015 J. Lumin. 165 40CrossRefGoogle Scholar
  12. 12.
    Lili H, Yuhua W, Jia Z and Ye T 2014 Mater. Chem. Phys. 143 476CrossRefGoogle Scholar
  13. 13.
    Xin-Yuan S, Shi-Ming H, Mu G, Qing-Chun G, Xiao-San G and Zi-PiaoY 2010 Phys. B 405 569CrossRefGoogle Scholar
  14. 14.
    Faria L O et al 2004 Radiat. Prot. Dosim. 112 435CrossRefGoogle Scholar
  15. 15.
    Silva E C et al 2013 Radiat. Meas. 59 119CrossRefGoogle Scholar
  16. 16.
    Hanh H K et al 2010 Nucl. Instrum. Methods Phys. Res. Sect. B 268 3344CrossRefGoogle Scholar
  17. 17.
    Kui H W, Lo D, Tsang Y C, Khaidukov N M and Makhov V N 2006 J. Lumin. 117 29CrossRefGoogle Scholar
  18. 18.
    Ha X V, Nguyen C T and Doan P T T 2014 J. Nucl. Sci. Technol. (Vietnam) 4 47Google Scholar
  19. 19.
    James O E, I-Ching L, Malgorzata M L, Paul M B, Alexandra N, Robert A L and Richard E R 1996 Thermochim. Acta 286 233Google Scholar
  20. 20.
    Chi F, Hu F, Wei I X, Chen Y and Yin M 2017 J. Rare Earths 35 436CrossRefGoogle Scholar
  21. 21.
    Mahiou R, Metin J, Fournier M T, Cousseins J C and Jacquier B 1989 J. Lumin. 1 51CrossRefGoogle Scholar
  22. 22.
    Kesavulu C R, Kim H J, Lee S W, Kaewkhao J, Kaewnuam E and Wantana N 2017 J. Alloys Compd. 704 557CrossRefGoogle Scholar
  23. 23.
    Te-Ju L, Li-Yang L, Eric W D, Teng-Ming C, Bing-Ming C and Chien-Yueh T 2006 Appl. Phys. Lett. 89 131121CrossRefGoogle Scholar
  24. 24.
    Chenggang Z, Anxian L, Ligang Z, Zhihua Z and Woyun L 2011 Spectrochim. Acta Part A 82 406CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  • Ha Xuan Vinh
    • 1
  • Nguyen Chi Thang
    • 1
  • Doan Phan Thao Tien
    • 1
  • Bui The Huy
    • 2
    Email author
  1. 1.Nha Trang Institute of Technology Research and Application – VASTNha TrangVietnam
  2. 2.Department of ChemistryChangwon National UniversityChangwonKorea

Personalised recommendations