Synthesis, characterization, optical and electrochemical band gaps of green poly(azomethine-ester)s containing oxalyl and succinyl units

  • Kevser Temizkan
  • İsmet KayaEmail author


A new series of poly(azomethine-ester)s (PAZ-E)s with different (turning ortho, meta and para) positions were synthesized by condensation polymerization. The chemical structure of polymers was verified by \(^{1}\)H-NMR, \(^{13}\)C-NMR, FTIR and UV–Vis measurements. Electrochemical characteristics of the corresponding polymers were obtained with cyclic voltammetric (CV) analysis. Thermal characteristics of the obtained polymers were analysed by TG-DTA, DMA and DSC measurements. The first degradation temperature values of PAZ-E compounds were found between 198 and \(250{^{\circ }}\hbox {C}\) from TGA measurements. Photophysical characteristics of the obtained polymers were explained with photoluminescence (PL) spectroscopy. Molecular weight distributions of (PAZ-E)s were obtained by gel permeation chromatographic (GPC) analysis. Two- and three-dimensional (2D and 3D) properties and images of the synthesized (PAZ-E)s were analysed by SEM and AFM surface analysis techniques, respectively. Electrochemical band gap (\({E}^{\prime }_{\mathrm{g}}\)) values of (PAZ-E)s P-9, P-10, P-11, P-12, P-13 and P-14 were calculated as 2.58, 2.14, 1.90, 2.06, 1.89 and 1.69 eV, respectively. The \({E}^\prime _{\mathrm{g}}\) values of the (PAZ-E)s were found to be quite low.


Poly(azomethine-ester) schiff base photophysical behaviour electrochemical properties thermal degradation surface morphologies 


  1. 1.
    Berendjchi A, Khajavi R, Yousefic A A and Yazdanshenas M E 2016 Appl. Surf. Sci. 363 264CrossRefGoogle Scholar
  2. 2.
    Harifi T and Montazer M 2014 Ind. Eng. Chem. Res. 53 1119CrossRefGoogle Scholar
  3. 3.
    Arbab A A, Sun K C, Sahito I A, Qadira M B and Jeong S H 2015 Phys. Chem. Chem. Phys. 17 12957CrossRefGoogle Scholar
  4. 4.
    Marin L, Cozan V and Bruma M 2006 Polym. Adv. Technol. 17 664CrossRefGoogle Scholar
  5. 5.
    Marin L, Cozan V, Bruma M and Grigoras V C 2006 Eur. Polym. J. 42 1173Google Scholar
  6. 6.
    Zhang S J, Li Y F, Wang X L, Yin D X, Shao Y and Zhao X 2005 Chin. Chem. Lett. 16 1165Google Scholar
  7. 7.
    Utkarsh S, Rao K V and Rakshit A K 2003 J. Polym. Sci. Pol. Chem. 88 152Google Scholar
  8. 8.
    Kausar A, Zulfiqar S, Ahmad Z and Sarwar M I 2010 Polym. Degrad. Stabil. 95 1826CrossRefGoogle Scholar
  9. 9.
    Huo H, Mo S, Sun H, Yang S and Fan L 2012 e-Polymer 12 566Google Scholar
  10. 10.
    Ghaemy M and Mighani H 2010 J. Appl. Polym. Sci. 118 2496CrossRefGoogle Scholar
  11. 11.
    Koole M, Frisenda R, Petrus M L, Perrin M L, Zant H S J and Dingemans T J 2016 Org. Electron. 34 38CrossRefGoogle Scholar
  12. 12.
    Farcas A and Grigoras M 2001 High. Perform. Polym. 13 201CrossRefGoogle Scholar
  13. 13.
    Doğan F, Kaya İ and Temizkan K 2014 J. Macromol. Sci. Part A: Pure Appl. Chem. 51 948Google Scholar
  14. 14.
    Dineshkumar S, Muthusamy A and Chandrasekaran J 2017 J. Mol. Struct. 1128 730CrossRefGoogle Scholar
  15. 15.
    Lv A, Cui Y, Du F S and Li Z C 2016 Macromolecules 49 8449CrossRefGoogle Scholar
  16. 16.
    Gennes P G, Chung T C and Petchsux A 1975 C R Acad. Sci. Ser. B 281 101Google Scholar
  17. 17.
    Perz V, Bleymaier K, Sinkel C, Kueper U, Bonnekessel M, Ribitsch D et al 2016 New Biotechnol. 33 295Google Scholar
  18. 18.
    Sek D 1984 Eur. Polym. J. 20 923CrossRefGoogle Scholar
  19. 19.
    Flory P J 1956 Proc. Roy. Soc. London A 234 60CrossRefGoogle Scholar
  20. 20.
    Fabbri M, Soccio M, Gigli M, Guidotti G, Gamberini R, Gazzano M et al 2016 Polymer 83 154CrossRefGoogle Scholar
  21. 21.
    Percec V and Yourd R 1989 Macromolecules 22 524CrossRefGoogle Scholar
  22. 22.
    Ahner J, Micheel M, Geitner R, Schmitt M, Popp J, Dietzek B et al 2017 Macromolecules 50 3789CrossRefGoogle Scholar
  23. 23.
    Iwan A and Sek D 2008 Prog. Polym. Sci. 33 289CrossRefGoogle Scholar
  24. 24.
    Balagi K and Murugavel S C 2011 J. Polym. Sci., Part A: Polym. Chem. 49 4809Google Scholar
  25. 25.
    Osada I, Vries H, Scrosati B and Passerini S 2012 Angew. Chem. Int. Ed. 55 500CrossRefGoogle Scholar
  26. 26.
    Muraria N M, Hwanga Y J, Kimb F S and Jenekhea S A 2016 Org. Electron. 31 104CrossRefGoogle Scholar
  27. 27.
    Shi Y and Yu G 2016 Chem. Mater. 28 2466CrossRefGoogle Scholar
  28. 28.
    Islam M S, Deng Y, Tong L, Faisal S N, Roy A K, Minett A I et al 2016 Carbon 96 701CrossRefGoogle Scholar
  29. 29.
    Lyon S B, Bingham R and Mills D J 2017 J. Inorg. Organomet. Polym. 102 2Google Scholar
  30. 30.
    Avcı A, Kamacı M, Kaya İ and Yıldırım M 2015 Mater. Chem. Phys. 163 301CrossRefGoogle Scholar
  31. 31.
    Kaya İ and Culhaoglu S 2009 Polimery 54 266CrossRefGoogle Scholar
  32. 32.
    Kaya İ, Aydın A and Temizkan K 2013 Chinese J. Polym. Sci. 31 1632Google Scholar
  33. 33.
    Karaer H, Kaya İ and Aydın H 2017 Polimery 62 170CrossRefGoogle Scholar
  34. 34.
    Doğan F, Kaya İ and Temizkan K 2016 J. Mol. Catal. B: Enzymatic 133 234CrossRefGoogle Scholar
  35. 35.
    Kaya İ, Avcı A and Temizkan K 2017 Macromol. Res. 25 45CrossRefGoogle Scholar
  36. 36.
    Şenol D, Kolcu F and Kaya İ 2016 J. Fluoresc. 26 1579CrossRefGoogle Scholar
  37. 37.
    Temizkan K and Kaya İ 2017 Polym. Bull. 74 2575CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Polymer Synthesis and Analysis Laboratory, Department of ChemistryÇanakkale Onsekiz Mart UniversityÇanakkaleTurkey

Personalised recommendations