Advertisement

Study on electrical conductivity and oxygen migration of the oxide-ion conductors \(\hbox {Na}_{0.5}\hbox {Bi}_{0.5}\hbox {Ti}_{1-x}\hbox {Mg}_{{x}}\hbox {O}_{3-x}\)

  • W G WangEmail author
  • X Y Li
  • T Liu
  • G L Hao
Article
  • 44 Downloads

Abstract

Electrical performance and oxygen relaxation behaviour in \(\hbox {Na}_{0.5}\hbox {Bi}_{0.5}\hbox {Ti}_{1-x}\hbox {Mg}_{{x}}\hbox {O}_{3-x }\) compounds were investigated. The oxide ion conductivity of \(\hbox {Na}_{0.5}\hbox {Bi}_{0.5}\hbox {Ti}_{1-x}\hbox {Mg}_{{x}}\hbox {O}_{3-x }\) compounds increased first and then decreased with increasing Mg-doped content. The highest oxide ion conductivity of \(4.7\times 10^{-3}\) S \(\hbox {cm}^{-1}\) at 773 K was observed for the \(\hbox {Na}_{0.5}\hbox {Bi}_{0.5}\hbox {Ti}_{0.96}\hbox {Mg}_{0.04}\hbox {O}_{2.96}\) compound. A typical relaxation peak in the \(\hbox {Na}_{0.5}\hbox {Bi}_{0.5}\hbox {Ti}_{1-x}\hbox {Mg}_{{x}}\hbox {O}_{3-x}\) samples was observed. The activation energy and pre-exponential factors were determined as (\(1.0~\hbox {eV}, 4.7\times 10^{-16}\) s) and (\(0.94{-}1.0~\hbox {eV}, 6.8\times 10^{-14}{-}3.1\times 10^{-13}\) s) from internal friction and dielectric relaxation measurement, respectively. The lower oxide ion conductivity in \(\hbox {Na}_{0.5}\hbox {Bi}_{0.5}\hbox {Ti}_{1-x}\hbox {Mg}_{{x}}\hbox {O}_{3-x}\) (\(x=0.06\), 0.08, 0.10) compounds may arise from the lower vacancy mobility. Judging from the electrical performance and relaxation parameters, although lower-level Mg-doping can improve oxide ionic conductor, oxygen vacancy mobility in \(\hbox {Na}_{0.5}\hbox {Bi}_{0.5}\hbox {Ti}_{1-x}\hbox {Mg}_{{x}}\hbox {O}_{3-x }\) compounds cannot be improved with increasing Mg-doping content. These results will be meaningful to ameliorate the electrical properties of \(\hbox {Na}_{0.5}\hbox {Bi}_{0.5}\hbox {Ti}_{1-x}\hbox {Mg}_{{x}}\hbox {O}_{3-x}\) compounds and understand the relationship between the electrical properties and structure.

Keywords

Dielectric relaxation internal friction oxide ionic conductivity enhanced factors oxygen vacancy mobility 

Notes

Acknowledgements

This work has been subsidized by the National Natural Science Foundation of China (nos. 11604286, 51661032), the Shaanxi Provincial Natural Science Foundation (no. 15JK1833), Special project of Yan’an University Institute of Material Physics Research and High-level University Construction Special Program of Shaanxi Province (no. Physics-2012SXTS05), the Yan’an University National Natural Science Foundation (nos. YD2015-07, YDBK2014-01) and by the Shanxi Provincial College students’ innovative projects (nos. D2017143, D2017163).

References

  1. 1.
    Yahiro H, Ohuchi T and Eguchi K 1988 J. Mater. Sci. 23 1036CrossRefGoogle Scholar
  2. 2.
    Pimenov A, Ullrich J, Lunkenheimer P, Loial A and Rscher C H 1998 Solid State Ion. 109 111CrossRefGoogle Scholar
  3. 3.
    Minh N Q 1993 J. Am. Ceram. Soc. 76 563CrossRefGoogle Scholar
  4. 4.
    Zhang H, Xu P, Pattersion E, Zang J, Jiang S and Rodel J 2015 J. Eur. Ceram. Soc. 35 2501CrossRefGoogle Scholar
  5. 5.
    Lane J A, Benson S J, Waller D and Kilner J A 1999 Solid State Ion. 121 201CrossRefGoogle Scholar
  6. 6.
    Kilner J A 2000 Solid State Ion. 129 13CrossRefGoogle Scholar
  7. 7.
    Mamontov E 2016 Solid State Ion. 296 158CrossRefGoogle Scholar
  8. 8.
    Kendall K R, Navas C, Thomas J K and Loye H C Z 1995 Solid State Ion. 82 215CrossRefGoogle Scholar
  9. 9.
    Li M, Zhang H, Cook S N, Kilner J A, Reaney I M and Sinclair D C 2015 Chem. Mater. 27 629CrossRefGoogle Scholar
  10. 10.
    Ishihara T, Matsuda H and Yakita Y 1994 J. Am. Chem. Soc. 116 3801CrossRefGoogle Scholar
  11. 11.
    Kramer A S, Tull H L,Yahiro H, Ohuchi T and Eguchi K 1988 J. Mater. Sci. 23 1036CrossRefGoogle Scholar
  12. 12.
    Li M, Pietrowski M J, De Souza R A, Zhang H, Reaney I M, Cook S N et al 2014 Nature Mater. 13 31CrossRefGoogle Scholar
  13. 13.
    Wang W G, Li X Y, Liu T and Hao G L 2016 Solid State Ion. 290 6CrossRefGoogle Scholar
  14. 14.
    Wang W G 2018 J. Mater. Sci.: Mater. Electron. 29 3973Google Scholar
  15. 15.
    Fang F, Wu P and Sinclair D C 2017 Solid State Ion. 299 38CrossRefGoogle Scholar
  16. 16.
    Wang W G, Wang X P, Gao Y X, Hao G L, Ma W Q and Fang Q F 2011 Solid State Sci. 13 1760CrossRefGoogle Scholar
  17. 17.
    Wang W G, Li X Y and Liu T 2017 J. Mater. Sci.: Mater. Electron. 28 15263Google Scholar
  18. 18.
    Hayashi H, Inaba H, Matsuyama M, Lan N G, Dokiya M and Tagawa H 1999 Solid State Ion. 122 1CrossRefGoogle Scholar
  19. 19.
    Murugan R, Thangadurai V and Weppner W 2007 Angew. Chem. Int. Ed. 46 7778CrossRefGoogle Scholar
  20. 20.
    Wang W G, Li X Y, Liu T and Hao G L 2015 AIP Adv. 5 107125CrossRefGoogle Scholar
  21. 21.
    Wang X P and Fang Q F 2002 Phys. Rev. B 65 064304CrossRefGoogle Scholar
  22. 22.
    Fang Q F, Wang X P, Zhang G G and Yi Z G 2003 J. Alloy. Comp. 355 177CrossRefGoogle Scholar
  23. 23.
    Wang C, Fang Q F, Shi Y and Zhu Z G 2001 Mater. Res. Bull. 362 657Google Scholar
  24. 24.
    Nowick A S and Berry B S 1972 Anelastic relaxation in crystalline solids (New York: Academic) p 41–73Google Scholar
  25. 25.
    Wang W G and Li X Y 2017 AIP Adv. 7 125318CrossRefGoogle Scholar
  26. 26.
    Meyer K C and Albe K 2017 J. Mater. Chem. A 5 4368CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.College of Physics and Electronic InformationYan’an UniversityYan’anPeople’s Republic of China

Personalised recommendations