Advertisement

Graphene quantum dots as a green photosensitizer with carbon-doped ZnO nanorods for quantum-dot-sensitized solar cell applications

  • Tanmoy Majumder
  • Suvra Prakash MondalEmail author
Article
  • 47 Downloads

Abstract

Graphene quantum dots (GQDs), N-doped GQDs (NGQDs) and S, N co-doped GQDs (SNGQDs) were synthesized using hydrothermal methods. All GQDs were attached with carbon-doped ZnO nanorods (C-ZnO NRs) grown on fluorine-doped tin oxide (FTO)-coated glass substrates, for the fabrication of metal-free eco-friendly quantum-dot-sensitized solar cells (QDSSCs). SNGQD-decorated nanorod-based solar cells demonstrated maximum open circuit voltage (\(V_{\mathrm{OC}}\sim 360\) mV), short circuit current (\(J_{\mathrm{SC}}\sim 1.84\) mA \(\hbox {cm}^{-2})\) and power conversion efficiency ( \(\eta \sim 0.293\)%) compared to other devices.

Keywords

GQDs C-ZnO NR QDSSC 

Notes

Acknowledgements

This research work was funded by CSIR Extramural Research Grant, Government of India.

References

  1. 1.
    Bauhuis G J, Mulder P, Haverkamp E J, Huijben J C C M and Schermer J J 2009 Sol. Energy Mater. Sol. Cells 93 1488CrossRefGoogle Scholar
  2. 2.
    Cook T R, Dogutan D K, Reece S Y, Surendranath Y, Teets T S and Nocera D G 2010 Chem. Rev. 110 6474CrossRefGoogle Scholar
  3. 3.
    Lewis N S 2007 Science 115 798CrossRefGoogle Scholar
  4. 4.
    Huang F, Hou J, Zhang Q, Wang Y, Masse R C, Peng S et al 2016 Nano Energy 26 114CrossRefGoogle Scholar
  5. 5.
    Wang J, Mora-Sero I, Pan Z, Zhao K, Zhang H, Feng Y et al 2013 J. Am. Chem. Soc. 135 15913CrossRefGoogle Scholar
  6. 6.
    Jiao S, Wang J, Shen Q, Li Y and Zhong X 2016 J. Mater. Chem. A 4 7214CrossRefGoogle Scholar
  7. 7.
    Yang J, Wang J, Zhao K, Izuishi T, Li Y, Shen Q 2015 J. Phys. Chem. C 119 28800CrossRefGoogle Scholar
  8. 8.
    Du J, Du Z, Hu J S, Pan Z, Shen Q, Sun J et al 2016 J. Am. Chem. Soc. 138 4201CrossRefGoogle Scholar
  9. 9.
    Zheng X T, Ananthanarayanan A, Luo K Q and Chen P 2016 Small 11 1620CrossRefGoogle Scholar
  10. 10.
    Qu D, Zheng M, Du P, Zhou Y, Zhang L, Li D et al 2013 Nanoscale 5 12272CrossRefGoogle Scholar
  11. 11.
    Fan Z, Li Y, Li X, Fan L, Zhou S, Fang D and Yang S 2014 Carbon 70 149CrossRefGoogle Scholar
  12. 12.
    Barman M K, Jana B, Bhattacharyya S and Patra A 2014 J. Phys. Chem. C 118 20034CrossRefGoogle Scholar
  13. 13.
    Majumder T and Mondal S P 2016 J. Electroanal. Chem. 769 48CrossRefGoogle Scholar
  14. 14.
    Majumder T, Debnath K, Dhar S, Hmar J J L and Mondal S P 2016 Energy Technol. 4 950CrossRefGoogle Scholar
  15. 15.
    Majumder T, Dhar S, Debnath K and Mondal S P 2017 Mater. Res. Bull. 93 214CrossRefGoogle Scholar
  16. 16.
    Zulkifli Z, Subramanian M, Tsuchiya T, Rosmi M S, Ghosh P, Kalita G et al 2014 RSC Adv. 4 64763CrossRefGoogle Scholar
  17. 17.
    Xie S, Lu X, Zhai T, Li W, Yu M, Liang C et al 2012 J. Mater. Chem. 22 14272CrossRefGoogle Scholar
  18. 18.
    Majumder T, Dhar S, Chakraborty P and Mondal S P 2018 Chem. Sel. 3 4082Google Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of PhysicsNational Institute of TechnologyAgartalaIndia

Personalised recommendations