Advertisement

Simulation of graphene–fullerene nanohybrid structure

  • J Meena DeviEmail author
Article
  • 46 Downloads

Abstract

In the present simulation study, the structure and dynamics of graphene–fullerene nanocomposite has been investigated using all atom molecular dynamics simulation technique. The formation of graphene–fullerene nanocomposite constituting graphene and self-assembly of 12 bucky balls has been demonstrated. The structure, size, interparticle separation, spatial distribution, temperature effect, mobility and conformation of graphene–fullerene nanocomposite, and the influence of single and two layers of graphene on the structure of graphene–fullerene nanocomposite have been determined and discussed in detail. This simulation result may possibly aid the design and development of graphene–fullerene hybrid nanomaterials for future biological and technological applications.

Keywords

Graphene fullerene nanohybrid self-assembly molecular dynamics simulation 

Notes

Acknowledgements

The author expresses her sincere thanks to SERB Fast Track Project [SR/FTP/PS-214/2012], New Delhi for the financial support. All the simulations were carried out in High Performance Computing Cluster at SASTRA Deemed University, Thanjavur, Tamil Nadu, India. The author thanks Dr L Ramya, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamilnadu, India for her valuable suggestions.

References

  1. 1.
    Allen M J, Tung V C and Kaner R B 2009 Chem. Rev. 110 132CrossRefGoogle Scholar
  2. 2.
    Liao L, Peng H and Liu Z 2014 J. Am. Chem. Soc. 136 12194CrossRefGoogle Scholar
  3. 3.
    Sanchez V C, Jachak A, Hurt R H and Kane A B 2011 Chem. Res. Toxicol. 25 15CrossRefGoogle Scholar
  4. 4.
    Yavari F and Koratkar N 2012 J. Phys. Chem. Lett. 3 1746CrossRefGoogle Scholar
  5. 5.
    Liu J, Tang J and Gooding J J 2012 J. Mater. Chem. 22 12435CrossRefGoogle Scholar
  6. 6.
    Gong X, Liu G, Li Y et al 2016 Chem. Mater. 28 8082CrossRefGoogle Scholar
  7. 7.
    Hu M, Yao Z and Wang X 2017 Ind. Eng. Chem. Res. 56 3477CrossRefGoogle Scholar
  8. 8.
    Bao Q and Loh K P 2012 ACS Nano 6 3677CrossRefGoogle Scholar
  9. 9.
    Chee W K, Lim H N, Zainal Z et al 2016 J. Phys. Chem. C 120 4153CrossRefGoogle Scholar
  10. 10.
    Chung C, Kim Y-K, Shin D et al 2013 Acc. Chem. Res. 46 2211CrossRefGoogle Scholar
  11. 11.
    Dinadayalane T C and Leszczynski J 2012 Fundamental structural, electronic, and chemical properties of carbon nanostructures: graphene, fullerenes, carbon nanotubes, and their derivatives. In: Handbook of computational chemistry (Dordrecht: Springer) p 793Google Scholar
  12. 12.
    Dinadayalane T C and Leszczynski J 2010 Struct. Chem. 21 1155CrossRefGoogle Scholar
  13. 13.
    Hermanson G T 2013 Buckyballs, fullerenes, and carbon nanotubes. Bioconjugate techniques, 3rd edn (London, UK; Waltham, USA; San Diego, USA: Academic Press) Chapter 16, p 741Google Scholar
  14. 14.
    Goodarzi S, Da Ros T, Conde J et al 2017 Fullerene: Mater. Today 20 460Google Scholar
  15. 15.
    Castro E, Garcia A H, Zavala G and Echegoyen L 2017 J. Mater. Chem. B 5 6523CrossRefGoogle Scholar
  16. 16.
    Popov A A, Yang S and Dunsch L 2013 Chem. Rev. 113 5989CrossRefGoogle Scholar
  17. 17.
    Coro J, Suárez M, Silva L S et al 2016 Int. J. Hydrogen Energy 41 17944CrossRefGoogle Scholar
  18. 18.
    Georgakilas V, Perman J A, Tucek J and Zboril R 2015 Chem. Rev. 115 4744CrossRefGoogle Scholar
  19. 19.
    Janani M, Srikrishnarka P, Nair S V and Nair A S 2015 J. Mater. Chem. A 3 17914CrossRefGoogle Scholar
  20. 20.
    Innocenzi P and Brusatin G 2001 Chem. Mater. 13 3126CrossRefGoogle Scholar
  21. 21.
    Mendes R G, Bachmatiuk A, Büchner B et al 2013 J. Mater. Chem. B 1 401CrossRefGoogle Scholar
  22. 22.
    Bakry R, Vallant R M, Najam-ul-Haq M et al 2007 Int. J. Nanomed. 2 639Google Scholar
  23. 23.
    Yu D, Park K, Durstock M and Dai L 2011 J. Phys. Chem. Lett. 2 1113CrossRefGoogle Scholar
  24. 24.
    Spyrou K, Kang L, Diamanti E K et al 2013 Carbon 61 313CrossRefGoogle Scholar
  25. 25.
    Liu Z-B, Xu Y-F, Zhang X-Y et al 2009 J. Phys. Chem. B 113 9681CrossRefGoogle Scholar
  26. 26.
    Thirumalraj B, Palanisamy S, Chen S-M and Lou B-S 2016 J. Colloid Interface Sci. 462 375CrossRefGoogle Scholar
  27. 27.
    Guan J, Chen X, Wei T et al 2015 J. Mater. Chem. A 3 4139CrossRefGoogle Scholar
  28. 28.
    Gan T, Hu C, Sun Z and Hu S 2013 Electrochim. Acta 111 738CrossRefGoogle Scholar
  29. 29.
    Li Q, Hong L, Li H and Liu C 2017 Biosens. Bioelectron. 89 477CrossRefGoogle Scholar
  30. 30.
    Rather J A, Khudaish E A, Munam A et al 2016 Sens. Actuators B: Chem. 237 672CrossRefGoogle Scholar
  31. 31.
    Neek-Amal M, Abedpour N, Rasuli S N et al 2010 Phys. Rev. E 82 051605CrossRefGoogle Scholar
  32. 32.
    Lohrasebi A, Neek-Amal M and Ejtehadi M R 2011 Phys. Rev. E 83 042601CrossRefGoogle Scholar
  33. 33.
    Savin A V and Kivshar Y S 2012 Sci. Rep. 2 1012CrossRefGoogle Scholar
  34. 34.
    Becton M, Zhang L and Wang X 2014 J. Nanomech. Micromech. 4 B4014002CrossRefGoogle Scholar
  35. 35.
    Mirzayev R, Mustonen K, Monazam M R et al 2017 Sci. Adv. 3 e1700176CrossRefGoogle Scholar
  36. 36.
    Xu S, Fu H, Li Y et al 2016 Phys. Chem. Chem. Phys. 18 10138CrossRefGoogle Scholar
  37. 37.
    Feng J, Ding H and Ma Y 2015 Carbon 90 34CrossRefGoogle Scholar
  38. 38.
    Ozmaian M, Fathizadeh A, Jalalvand M et al 2016 Sci. Rep. 6 21910CrossRefGoogle Scholar
  39. 39.
    Mukhopadhyay T K and Datta A 2017 J. Phys. Chem. C 121 10210CrossRefGoogle Scholar
  40. 40.
    Mukhopadhyay T K and Datta A 2018 ACS Appl. Mater. Interfaces 10 13805CrossRefGoogle Scholar
  41. 41.
    Wu X and Zeng X C 2008 Nano Lett. 9 250CrossRefGoogle Scholar
  42. 42.
    Ojeda-Aristizabal C, Santos E J, Onishi S et al 2017 ACS Nano 11 4686CrossRefGoogle Scholar
  43. 43.
    Ullmann K, Coto P B, Leitherer S et al 2015 Nano Lett. 15 3512CrossRefGoogle Scholar
  44. 44.
    Laref S, Asaduzzaman A M, Beck W et al 2013 Chem. Phys. Lett. 582 115CrossRefGoogle Scholar
  45. 45.
    Wang M and Li C M 2011 Phys. Chem. Chem. Phys. 13 5945CrossRefGoogle Scholar
  46. 46.
    Lau C S, Sadeghi H, Rogers G et al 2015 Nano Lett. 16 170CrossRefGoogle Scholar
  47. 47.
    MacKerell A D, Banavali N and Foloppe N 2000 Biopolymers 56 257CrossRefGoogle Scholar
  48. 48.
    Sathe C, Zou X, Leburton J-P and Schulten K 2011 ACS Nano 5 8842CrossRefGoogle Scholar
  49. 49.
    Luo N, Weber J K, Wang S et al 2017 Nat. Commun. 8 14537CrossRefGoogle Scholar
  50. 50.
    Saikia N, Johnson F, Waters K and Pandey R 2018 Nanotechnology 29 195601CrossRefGoogle Scholar
  51. 51.
    Kraszewski S, Tarek M, Treptow W and Ramseyer C 2010 ACS Nano 4 4158CrossRefGoogle Scholar
  52. 52.
    Kraszewski S, Tarek M and Ramseyer C 2011 ACS Nano 5 8571CrossRefGoogle Scholar
  53. 53.
    Phillips J C, Braun R, Wang W et al 2005 J. Comput. Chem. 26 1781CrossRefGoogle Scholar
  54. 54.
    Verhagen T G A, Vales V, Kalbac M and Vejpravova J 2017 Diamond Relat. Mater. 75 140CrossRefGoogle Scholar
  55. 55.
    Saikia N, Jha A N and Deka R C 2013 J. Phys. Chem. Lett. 4 4126CrossRefGoogle Scholar
  56. 56.
    Goler S, Coletti C, Tozzini V et al 2013 J. Phys. Chem. C 117 11506CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Centre for Nanotechnology and Advanced Biomaterials (CeNTAB), School of Electrical and Electronics Engineering (SEEE)SASTRA Deemed UniversityThanjavurIndia

Personalised recommendations