Bentonite polymer composite for water purification

  • Gulziya A SeilkhanovaEmail author
  • Ainur N Imangaliyeva
  • Yitzhak Mastai
  • Akmaral B Rakhym


A polyethylene glycol (PEG)–bentonite (BT) composite was prepared by direct polymerization of PEG in suspensions of BT. Based on detailed analyses using field-effect scanning electron microscopy, X-ray diffraction, surface area measurements and chemical methods, the obtained product was mainly composed of Ca-BT with a specific surface area of \(4.13 \hbox { m}^{2} \hbox { g}^{-1}\). The optimal conditions for adsorption of \(\hbox {Pb}^{2+}\) and \(\hbox {Cd}^{2+}\) ions were found to be a PEG content of 0.1% and a contact time of 60 min. The sorption experiments were performed under various operating variables, including polymer concentration, pH and temperature. For both \(\hbox {Pb}^{2+}\) and \(\hbox {Cd}^{2+}\), the adsorption equilibrium was described by the Freundlich model, which confirmed the presence of a heterogeneous system with irregular filling of the active centres. The maximum sorption capacities of BT–PEG for removal of \(\hbox {Pb}^{2+}\) and \(\hbox {Cd}^{2+}\) were found to be 22 and 18 mg \(\hbox {g}^{-1}\), respectively. The rate constants calculated for the sorption of \(\hbox {Pb}^{2+}\) and \(\hbox {Cd}^{2+}\) were 6.29 and 6.67 g \(\hbox {mg}^{-1} \hbox { min}^{-1}\), respectively, at \(25^{\circ }\hbox {C}\). This study shows that the obtained sorbents based on BT may be used for treatment of waste water and could help resolve environmental protection issues.


Bentonite clay polyethylene glycol lead cadmium sorption composite materials 



This work was supported by a grant from the Ministry of Education and Science of the Republic of Kazakhstan 3444/GF4 ‘Scientific bases development of phosphorus-containing compounds obtained on the basis of technogenic mineral raw materials’.

Supplementary material

12034_2019_1752_MOESM1_ESM.docx (60 kb)
Supplementary material 1 (docx 59 KB)


  1. 1.
    Elouear Z, Bouzid J, Boujelben N, Feki M, Jamoussi F and Montiel A 2008 J. Hazard. Mater. 156 412CrossRefGoogle Scholar
  2. 2.
    Ibrahim H S, Jamil T S and Hegazy E Z 2010 J. Hazard. Mater. 182 842CrossRefGoogle Scholar
  3. 3.
    Prasad M, Xu H Y and Saxena S 2008 J. Hazard. Mater. 154 221CrossRefGoogle Scholar
  4. 4.
    Kim K-H, Keller A A and Yang J-K 2013 Colloids Surf. A: Physicochem. Eng. Asp. 425 6CrossRefGoogle Scholar
  5. 5.
    Jørgensen S E 1979 Stud. Environ. Sci. 5 217CrossRefGoogle Scholar
  6. 6.
    Qu Q, Gu Q, Gu Z, Shen Y, Wang C and Hu X 2012 Colloids Surf. A: Physicochem. Eng. Asp. 415 41CrossRefGoogle Scholar
  7. 7.
    Pagnanelli F, Mainelli S, De Angelis S and Toro L 2005 Water Res. 39 1639CrossRefGoogle Scholar
  8. 8.
    Miretzky P, Saralegui A and Fernández Cirelli A 2006 Chemosphere 62 247CrossRefGoogle Scholar
  9. 9.
    Petrus R and Warchoł J K 2005 Water Res. 39 819CrossRefGoogle Scholar
  10. 10.
    Sprynskyy M, Buszewski B, Terzyk A P and Namieśnik J 2006 J. Colloid Interface Sci. 304 21CrossRefGoogle Scholar
  11. 11.
    Kobya M, Demirbas E, Senturk E and Ince M 2005 Bioresour. Technol. 96 1518CrossRefGoogle Scholar
  12. 12.
    Rauf N, Ikram M and Tahir S S 1999 Adsorpt. Sci. Technol. 17 431CrossRefGoogle Scholar
  13. 13.
    Al-Asheh S, Banat F and Al-Rousan D 2003 J. Cleaner Prod. 11 321CrossRefGoogle Scholar
  14. 14.
    Youssef A M, El-Nabarawy T and Samra S E 2004 Colloids Surf. A: Physicochem. Eng. Asp. 235 153CrossRefGoogle Scholar
  15. 15.
    Ma J, Cui B, Dai J and Li D 2011 J. Hazard. Mater. 186 1758CrossRefGoogle Scholar
  16. 16.
    Inglezakis V J, Stylianou M A, Gkantzou D and Loizidou M D 2007 Desalination 210 248CrossRefGoogle Scholar
  17. 17.
    Glazacheva E N, Uspenskaya M V and Strelnikova I E 2015 Water Resour. Manag. 196 529Google Scholar
  18. 18.
    Natkański P, Białas A and Kuśtrowski P 2012 Chemik 7 746Google Scholar
  19. 19.
    Ulusoy U and Şimşek S 2005 J. Hazard. Mater. 127 163CrossRefGoogle Scholar
  20. 20.
    Zaharia A, Sarbu A, Radu A L, Jankova K, Daugaard A and Hvilsted S 2015 Appl. Clay Sci. 103 46CrossRefGoogle Scholar
  21. 21.
    Sillanpaa A J, Aksela R and Laasonen K 2003 Phys. Chem. Chem. Phys. 5 3382CrossRefGoogle Scholar
  22. 22.
    Vreysen S and Maes A 2006 Appl. Clay Sci. 32 190CrossRefGoogle Scholar
  23. 23.
    Tang W P, Ogo Y, Minamimoto N and Takeoka M 2006 Chem. Lett. 35 674CrossRefGoogle Scholar
  24. 24.
    Clegg F, Breen C and Khairuddin M 2014 J. Phys. Chem. B 118 13268CrossRefGoogle Scholar
  25. 25.
    Gupta S S and Bhattacharyya K G 2009 Indian J. Chem. Technol. 16 457Google Scholar
  26. 26.
    Pavlik Z 2006 J. Build. Phys. 30 59CrossRefGoogle Scholar
  27. 27.
    Yeboah N N, Shearer C R, Burns S E and Kurtis K E 2014 Fuel 116 438CrossRefGoogle Scholar
  28. 28.
    Hook J 2003 Petrophysics 44 205Google Scholar
  29. 29.
    ASTM 2006 Standard test method for determination of iodine number of activated carbon 1 (ASTM Int.)Google Scholar
  30. 30.
    Tugrul N, Derun E M and Pişkin M 2006 Waste Manage. Res. 24 446CrossRefGoogle Scholar
  31. 31.
    Brigatti M F, Galan E and Theng B K G 2006 Dev. Clay Sci. 1 19CrossRefGoogle Scholar
  32. 32.
    Caglar B, Afsin B, Tabak A and Eren E 2009 Chem. Eng. J. 149 242CrossRefGoogle Scholar
  33. 33.
    Pyrzyńska K and Bystrzejewski M 2010 Colloids Surf. A: Physicochem. Eng. Asp. 362 102CrossRefGoogle Scholar
  34. 34.
    Bogya E S, Baldea I, Barabas R, Csavdari A, Turdean G and Dejeu V R 2010 Stud. Univ. Babes-Bolyai Chem. 2 363Google Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  • Gulziya A Seilkhanova
    • 1
    Email author
  • Ainur N Imangaliyeva
    • 1
  • Yitzhak Mastai
    • 2
  • Akmaral B Rakhym
    • 1
  1. 1.Faculty of Chemistry and Chemical TechnologyAl-Farabi Kazakh National UniversityAlmatyKazakhstan
  2. 2.Department of Chemistry and the Institute of NanotechnologyBar-Ilan UniversityRamat-GanIsrael

Personalised recommendations