Advertisement

Simulation of dielectric and resonance and anti-resonance data using modified Lorentz equation (T and \(\omega \) simultaneously) of relaxor ferroelectric and piezoelectric ceramics

  • S MahboobEmail author
  • Rizwana
  • G Prasad
  • G S Kumar
Article
  • 34 Downloads

Abstract

Dielectric data of new [\(\hbox {Ba}(\hbox {Nd}_{x}\hbox {Ti}_{1-2x}\hbox {Nb}_{x})\hbox {O}_{3}\)]\(_{0.30}\)[\(\hbox {Na}_{0.5}\hbox {Bi}_{0.5}\hbox {TiO}_{3}\)]\(_{0.70}\) (\(x = 0.075\)) relaxor ceramic was modelled using a new modified Lorentz equation (T and \(\omega \) simultaneously) as proposed by us. The activation energy for thermally activated orientation of dipoles and relaxation times were estimated. Dielectric resonance and anti-resonance data as a function of temperature and angular frequency of other piezoelectric compound [\(\hbox {Ba}(\hbox {Nd}_{0.1}\hbox {Ti}_{0.8}\hbox {Nb}_{0.1})\hbox {O}_{3}\)]\(_{0.35}\) \([(\hbox {Na}_{0.5}\hbox {Bi}_{0.5})\hbox {TiO}_{3}\)]\(_{0.65}\) was also modelled using the modified Lorentz equation as proposed by us. It is shown that using this equation, it is possible to obtain the polarizability, piezoelectric charge constant, piezoelectric voltage constant and activation energy for resonance and anti-resonance.

Keywords

Dielectric relaxor Lorentz equation modified Lorentz equation electromechanical coupling piezoelectric charge constant 

References

  1. 1.
    Cheng Z Y, Ying Zhang L and Yao Z 1996 J. Appl. Phys.  179 8615CrossRefGoogle Scholar
  2. 2.
    Panigrahi M R and Panigrahi S 2011 Bull. Mater. Sci.  34 927CrossRefGoogle Scholar
  3. 3.
    Kallel I, Abdelkafi Z, Abdelmoula N, Simon A and Khemakhem H 2013 Bull. Mater. Sci.  36 893CrossRefGoogle Scholar
  4. 4.
    Mahboob S, Rizwana and Kumar G S 2015 Integr. Ferroelectr.  167 115CrossRefGoogle Scholar
  5. 5.
    Rizwana, Mahboob S and Sarah P 2017 Ferroelectrics  510 87CrossRefGoogle Scholar
  6. 6.
    Mahboob S, Rizwana, Prasad G and Kumar G S 2017Ferroelectrics  506 184CrossRefGoogle Scholar
  7. 7.
    Yuhyong L, Juhyun Y, Kabsoo L, Insung K, Jaesung S and Yong-Wook P 2010 J. Alloys Compd.  506 872CrossRefGoogle Scholar
  8. 8.
    Micka B, Fabien G, Frédéric S, Guy F, Le Clezio E and Monot-Laffez I 2014 Ceram. Int.  40 7473CrossRefGoogle Scholar
  9. 9.
    Jiaqi Z, Lei W, Liang B, Jinbao X and Aiming C 2014 Ceram. Int.  40 5173CrossRefGoogle Scholar
  10. 10.
    Fei Hao H, Guoqiang T, Huijun R, Xia A and Xiong P 2014 Ceram. Int.  40 9485CrossRefGoogle Scholar
  11. 11.
    ANSI/IEEE Standards on piezoelectricity 1987 176 51Google Scholar
  12. 12.
    Mahboob S, Rizwana and Kumar G S 2016 Ferroelectrics  494 84Google Scholar
  13. 13.
    Mahboob S, Rizwana, Prasad G and Kumar G S 2017 Ferroelectrics  506 184CrossRefGoogle Scholar
  14. 14.
    Mahboob S, Rizwana, Prasad G and Kumar G S 2017 Ferroelectrics  507 102CrossRefGoogle Scholar
  15. 15.
    Mahboob S, Prasad G and Kumar G S 2015 Ferroelectrics  48 89CrossRefGoogle Scholar
  16. 16.
    Mahboob S, Prasad G and Kumar G S 2013 Ferroelectrics  45 172CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Materials Research Laboratory, Department of PhysicsOsmania UniversityHyderabadIndia
  2. 2.Institute of Aeronautical EngineeringDundigal, HyderabadIndia

Personalised recommendations