A facile synthesis of novel \(\upalpha \)-\(\hbox {ZnMoO}_{{4}}\) microspheres as electrode material for supercapacitor applications

  • B Joji Reddy
  • P VickramanEmail author
  • A Simon Justin


A mixed metal oxide, \(\upalpha \)-\(\hbox {ZnMoO}_{{4}}\) is prepared in a simple, lucid and facile synthesis route as an active material for supercapacitor applications. The structural and morphological information is provided by X-ray diffraction, Fourier transform infrared, Raman and scanning electron microscopy data. The as-prepared \(\upalpha \)-\(\hbox {ZnMoO}_{{4}}\) microspheres are subjected to cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopy studies to examine its electrochemical behaviour in 2  M KOH aqueous electrolyte. Zinc molybdate microspheres have demonstrated very good electrochemical performance with 234.75 F \(\hbox {g}^{-1}\) at 0.5 A \(\hbox {g}^{-1}\) with good specific capacitance retention (82%) for sustained 1600 charge/discharge cycles.


Zinc molybdate microspheres cyclic voltammetry specific capacitance cyclic stability 


  1. 1.
    Xia X, Lei W, Hao Q, Wang W and Wang X 2013 Electrochim. Acta 99 253CrossRefGoogle Scholar
  2. 2.
    Vellacheri R, Pillai V K and Kurungot S 2012 Nanoscale 4 890CrossRefGoogle Scholar
  3. 3.
    Wang Y, Guo J, Wang T, Shao J, Wang D and Yang Y-W 2015 Nanomaterials 5 1667CrossRefGoogle Scholar
  4. 4.
    Xue R, Hong W, Pan Z, Jin W, Zhao H, Song Y et al 2016 Electrochim. Acta 22 838CrossRefGoogle Scholar
  5. 5.
    Jayalakshmi M and Balasubramanian K 2009 Int. J. Electrochem. Sci. 4 571Google Scholar
  6. 6.
    Yuan C, Wu H B, Xie Y and Lou X W 2014 Angew. Chem. Int. Ed. 53 1488CrossRefGoogle Scholar
  7. 7.
    Xiao W, Chen J S, Li C M, Xu R and Lou X W 2010 Chem. Mater. 22 746CrossRefGoogle Scholar
  8. 8.
    Singh R N, Singh J P and Singh A 2008 Int. J. Hydrogen Energy 33 4260CrossRefGoogle Scholar
  9. 9.
    Kianpour G, Soofivand F, Badiei M, Salavati-Niasari M and Hamadanian M 2016 J. Mater. Sci.: Mater. Electron. 27 10244Google Scholar
  10. 10.
    Cherian C T, Reddy M V, Haur S C and Chowdari B V R 2013 ACS Appl. Mater. Interfaces 5 918CrossRefGoogle Scholar
  11. 11.
    Peng S, Li L, Wu H B, Madhavi S and Lou X W (David) 2014 Adv. Energy Mater. 1401171Google Scholar
  12. 12.
    Zhou C, Yang W, Zeng G, Lei Y, Gu L, Xi X et al 2015 Chem. Asian J. 10 1745CrossRefGoogle Scholar
  13. 13.
    Wang J, Liu S, Zhang X, Liu X, Liu X, Li N et al 2016 Electrochim. Acta 213 663CrossRefGoogle Scholar
  14. 14.
    Purushottaman K K, Cuba M and Muralidharan G 2012 Mater. Res. Bull. 47 3348CrossRefGoogle Scholar
  15. 15.
    Senthilkumar B, Selvan R K, Meyrick D and Minakshi M 2015 Int. J. Electrochem. Sci. 10 185Google Scholar
  16. 16.
    Xue R, Hong W, Pan Z, Jin W, Zhao H, Song Y et al 2016 Electrochim. Acta 222 838CrossRefGoogle Scholar
  17. 17.
    Ramezani M, Hosseinpour-Mashkani S M, Sobhani-Nasab A and Ghasemi Estarki H 2015 J. Mater. Sci.: Mater. Electron. 26 7588Google Scholar
  18. 18.
    Zhang G, Yu S, Yang Y, Jiang W, Zhang S and Huang B 2007 J. Cryst. Growth 312 1866CrossRefGoogle Scholar
  19. 19.
    Gironi L, Arnaboldia C, Beeman J W, Cremonesi O, Danevich F A, Degoda V Y et al 2010 J. Instrum. 5 11007CrossRefGoogle Scholar
  20. 20.
    Lv L, Tong W, Zhang Y, Su Y and Wang X 2011 J. Nanosci. Nanotechnol. 11 9506CrossRefGoogle Scholar
  21. 21.
    Ivleva L I, Voronina I S, Berezovskaya L Y, Lykov P A, Osiko V V and Iskhakova L D 2008 Crystallogr. Rep. 53 1087CrossRefGoogle Scholar
  22. 22.
    Abrahams S C 1967 J. Chem. Phys. 46 2052CrossRefGoogle Scholar
  23. 23.
    Liang Y, Liu P, Li H B and Yang G W 2012 Cryst. Growth Des. 12 4487CrossRefGoogle Scholar
  24. 24.
    Hardcastle F D and Wachs I E 1990 J. Raman Spectrosc. 21 683CrossRefGoogle Scholar
  25. 25.
    Bhattacharya S, Kar T, Bar A K, Roy D, Graca M P F and Valente M A 2011 Sci. Adv. Mater. 3 284CrossRefGoogle Scholar
  26. 26.
    Subcik J, Koudelka L, Mosner P, Montagne L, Revel B and Gregora I 2009 J. Non-Cryst. Solids 355 970CrossRefGoogle Scholar
  27. 27.
    Keereeta Y, Thongtem T and Thongtem S 2012 Mater. Lett. 68 265CrossRefGoogle Scholar
  28. 28.
    Jia R, Zhang Ch and Xu J 2013 Adv. Mater. Res. 624 51CrossRefGoogle Scholar
  29. 29.
    Aleksandrov L, Komatsu T, Iordanova R and Dimitriev Y 2011 Opt. Mater. 33 839CrossRefGoogle Scholar
  30. 30.
    Nakamoto V K 1963 Infrared spectra of inorganic and coordination compounds (New York, London: John Wiley & Sons, Inc.)Google Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Solid State Ionics Lab, Department of PhysicsThe Gandhigram Rural Institute-DUGandhigramIndia

Personalised recommendations