Advertisement

First principles study of breaking energy and mechanical strength of Kevlar-29

  • Harsha Verma
  • B Keshav RaoEmail author
  • Mohan L Verma
  • Jitendra Chauhan
Article
  • 29 Downloads

Abstract

The first principles study is performed for the mechanical strength of Kevlar-29, and is based on density functional theory. The bond strength is investigated relative to the displacement of central nitrogen atom along X, Y and Z directions, respectively. The structural property analysis explains the asymmetric nature. A higher bond breaking energy is observed during compression along Z direction and vice versa for elongation. It is an insulator of forbidden energy gap which increases while compression and reduces during elongation. Crystal orbital overlap population reveals the higher strength of anti-bonding orbitals. It is mechanically stronger along the Z-axis and weaker along the Y-axis.

Graphical abstract

Keywords

SIESTA density functional theory DOS COOP tensile stress 

Notes

Acknowledgements

The authors gratefully acknowledge the management of Shri Shankaracharya Technical Campus-SSGI for the computing facility in the research laboratory. The first and third authors acknowledge the kind support of the Department of Mechanical Engineering, BIT, Durg.

References

  1. 1.
    Hindeleh A M and Abdo S M 1989 Polymer 30 218CrossRefGoogle Scholar
  2. 2.
    Hindeleh A M and Abdo S M 1989 Polym. Commun. 30 184CrossRefGoogle Scholar
  3. 3.
    Hancox N 1993 Mater. Design 14 312CrossRefGoogle Scholar
  4. 4.
    Fink J K 2008 High performance polymer (Norwich: William Andrew Inc.) p 423Google Scholar
  5. 5.
    Downing J W and Newell J A 2004 J. Appl. Poly. Sci. 91 417CrossRefGoogle Scholar
  6. 6.
    Hongu T, Phillips GO and Takigami M 2005 New millennium fibers (USA: Woodhead Publishing) p 299CrossRefGoogle Scholar
  7. 7.
    Yang H H 1993 Kevlar aramid fiber (New York: John Wiley & Sons Inc.)Google Scholar
  8. 8.
    Wortmann F J and Schulz K V 1995 Polymer 36 2363CrossRefGoogle Scholar
  9. 9.
    Jacobs M J N and Dingenen J L J V 2001 J. Mater. Sci. 36 3137CrossRefGoogle Scholar
  10. 10.
    Rao M P, Duan Y, Keefe M, Powers B M and Bogetti T A 2009 Compos. Struct. 89 556CrossRefGoogle Scholar
  11. 11.
    Duan Y, Keefe M, Bogetti T A and Cheeseman B A 2005 Int. J. Impact. Eng. 31 996CrossRefGoogle Scholar
  12. 12.
    Duan Y, Keefe M, Bogetti T A and Powers B 2006 Int. J. Mech. Sci. 48 33CrossRefGoogle Scholar
  13. 13.
    Gu B 2004 J. Compos. Mater. 38 2049CrossRefGoogle Scholar
  14. 14.
    Ha-Minh C, Kanit T, Boussu F and Imad A 2011 J. Comput. Mater. Sci. 50 2172CrossRefGoogle Scholar
  15. 15.
    Li T T, Wang R, Lou C W and Lin J H 2014 Composites, Part B 59 60CrossRefGoogle Scholar
  16. 16.
    Singh T J and Samanta S 2015 Mater. Today Proc. 2 1381CrossRefGoogle Scholar
  17. 17.
    Bandaru A K, Chavan V V, Ahmad S, Alagirusamy R and Bhatnagar N 2016 Int. J. Impact Eng. 93 136CrossRefGoogle Scholar
  18. 18.
    Aamir M and Yu M 2015 Int. J. Sci. Res. Publ. 5 2250Google Scholar
  19. 19.
    Woo S C and Kim T W 2014 Composites, Part B 60 125CrossRefGoogle Scholar
  20. 20.
    Wortmann F J and Schulz K V 1995 J. Poly. 36 2363CrossRefGoogle Scholar
  21. 21.
    Pregoretti A, Traina M and Bunsell A R (eds) 2009 Handbook of tensile properties of textile and technical fibers (Cambridge: Woodhead Publishing Limited) p 354Google Scholar
  22. 22.
    Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864CrossRefGoogle Scholar
  23. 23.
    Solar M et al 2002 J. Phys.: Condens. Matter 14 2745Google Scholar
  24. 24.
    Perdew J P and Burke K 1996 J. Phys. Rev. Lett. 77 3865CrossRefGoogle Scholar
  25. 25.
    Trouillier N and Martins J L 1991 J. Phys. Rev. B 43 1993CrossRefGoogle Scholar
  26. 26.
    Junquera J, Paz O, Portal D S and Artacho E 2001 J. Phys. Rev. B 64 235111CrossRefGoogle Scholar
  27. 27.
    Shen C, Wang J, Tang Z, Wang H, Lian H, Zhang J et al 2009 Electrochim. Acta 54 3490CrossRefGoogle Scholar
  28. 28.
    Cisnerosa J A B, Ochoaa A T, Estradab J A G, Ramírezc C A H, Macíasa A H, Sáncheza R M et al 2012 J. Alloys Compd. 536S S456Google Scholar
  29. 29.
    Verma M L, Rao B K, Singh R, Banchor D and Sahu H D 2017 J. Ionics 23 2715CrossRefGoogle Scholar
  30. 30.
    Matar S F, Pottgen R, Alam A F A and Ouaini N 2012 Chem. Phys. Lett. 5 75Google Scholar
  31. 31.
    Hughbanks T and Hoffmann R 1983 J. Am. Chem. Soc. 11 3528CrossRefGoogle Scholar
  32. 32.
    Lin L Y, Ying Z, Jie H R and Hong L G 2009 Chim. Phys. B 5 1923CrossRefGoogle Scholar
  33. 33.
    Bresciani L M, Manes A, Ruggiero A, Iannitti G and Giglio M 2016 Composites, Part B 88 114CrossRefGoogle Scholar
  34. 34.
    Ahmed D, Hongpeng Z, Haijuan K, Jing L, Yua M and Muhuo Y 2014 Mater. Res. 17 1180CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringBhilai Institute of TechnologyDurgIndia
  2. 2.Department of Applied PhysicsFET-SSGI Shri Shankaracharya Technical CampusBhilaiIndia

Personalised recommendations