Prediction of magnetic and magnetocaloric properties in \(\hbox {Pr}_{0.8-x}\hbox {Bi}_{x}\hbox {Sr}_{0.2}\hbox {MnO}_{3}\) (\(x=0\), 0.05 and 0.1) manganites

  • A Ben Jazia KharratEmail author
  • E K Hlil
  • W Boujelben


In this work, we have investigated the magnetic and magnetocaloric properties of \(\hbox {Pr}_{0.8-x}\hbox {Bi}_{x}\hbox {Sr}_{0.2}\hbox {MnO}_{3}\) (\(x=0\), 0.05 and 0.1) polycrystalline manganites prepared by sol–gel route on the basis of a phenomenological model. Temperature dependence of magnetization indicates that all our samples exhibit a second order paramagnetic to ferromagnetic transition with a decrease in temperature. A correlation between experimental results and theoretical analysis based on a phenomenological model is investigated. The magnetic and magnetocaloric measurements are well simulated by this model. Under a magnetic applied field of 5 T, the theoretical absolute values of the maximum of magnetic entropy change \(\Delta S_{{\mathrm{Max}}}\) are found to be equal to 5.33, 3.33 and \(2.97\,\hbox {J}\,\hbox {kg}^{-1}\,\hbox {K}^{-1}\) for \(x=0\), 0.05 and 0.1 respectively. The relative cooling power and the specific heat capacity values are also estimated. The predicted results permit us to conclude that our compounds may be promising candidates for magnetic refrigeration at low temperatures.


Magnetic transition phenomenological model magnetocaloric effect critical exponents specific heat 



This work has been supported by the Tunisian Ministry of Higher Education and Scientific Research.


  1. 1.
    Phong P T, Dang N V, Nam P H, Phong L T H, Manh D H, An N M et al 2016 J. Alloys Compd. 683 67CrossRefGoogle Scholar
  2. 2.
    Mira J, Rivas J, Hueso L E, Rivadulla F and Lopez Quintela M A 2002 J. Appl. Phys. 91 8903CrossRefGoogle Scholar
  3. 3.
    Wang Z, Xu Q, Sun J, Pan J and Zhang H 2011 Phys. B 406 1436CrossRefGoogle Scholar
  4. 4.
    Gschneidner Jr K A, Pecharsky V K and Tsokol A O 2005 Rep. Prog. Phys. 68 1479CrossRefGoogle Scholar
  5. 5.
    Zheng X, Zhang B, Li Y, Wu H, Zhang H, Zhang J et al 2016 J. Alloys Compd. 680 617CrossRefGoogle Scholar
  6. 6.
    Pecharsky V K and Gschneidner K A 1997 Phys. Rev. Lett. 78 4494CrossRefGoogle Scholar
  7. 7.
    Hu F-X, Shen B-G, Sun J-R, Cheng Z-H, Rao G-H and Zhang X-X 2001 Appl. Phys. Lett. 78 3675CrossRefGoogle Scholar
  8. 8.
    Zheng X Q, Shao X P, Chen J, Xu Z Y, Hu F X, Sun J R et al 2013 Appl. Phys. Lett. 102 022421CrossRefGoogle Scholar
  9. 9.
    Phan M H and Yu S C 2007 J. Magn. Magn. Mater. 308 325CrossRefGoogle Scholar
  10. 10.
    Ben Jazia Kharrat A, Hlil E K and Boujelben W 2018 J. Alloys Compd. 739 101CrossRefGoogle Scholar
  11. 11.
    Krichene A, Bourouina M, Venkateshwarlu D, Solanki P S, Rayaprol S, Ganesan V et al 2016 J. Magn. Magn. Mater. 408 116CrossRefGoogle Scholar
  12. 12.
    Krichene A, Solanki P S, Rayaprol S, Ganesan V, Boujelben W and Kuberkar D G 2015 Ceram. Int. 41 2637CrossRefGoogle Scholar
  13. 13.
    Hamad M A 2014 Phase Transit. 87 460CrossRefGoogle Scholar
  14. 14.
    Hamad M A 2015 J. Adv. Ceram. 206 210Google Scholar
  15. 15.
    Gharsallah H, Bejar M, Dhahri E, Hlil E K and Bessais L 2016 Ceram. Int. 42 697CrossRefGoogle Scholar
  16. 16.
    Hsini M, Hcini S and Zemni S 2018 J. Magn. Magn. Mater. 466 368CrossRefGoogle Scholar
  17. 17.
    Bingham N S, Phan M H, Srikanth H, Torija M A and Leighton C 2009 J. Appl. Phys. 106 023909CrossRefGoogle Scholar
  18. 18.
    Ben Jazia Kharrat A, Moussa S, Moutiaa N, Khirouni K and Boujelben W 2017 J. Alloys Compd. 724 389CrossRefGoogle Scholar
  19. 19.
    Hamad M A 2014 Phase Transit. 85 460CrossRefGoogle Scholar
  20. 20.
    Hamad M A 2012 Mater. Lett. 82 181CrossRefGoogle Scholar
  21. 21.
    Hamad M A 2012 Phase Transit. 85 106CrossRefGoogle Scholar
  22. 22.
    Zhong W, Chen W, Ding W P, Zhang N, Hu A, Du Y W and Yan Q J 1998 Eur. Phys. J. B 3 169CrossRefGoogle Scholar
  23. 23.
    Dhahri A H, Jemmali M, Dhahri E and Valente M A 2015 J. Alloys Compd. 638 221CrossRefGoogle Scholar
  24. 24.
    Zener C 1951 Phys. Rev. 81 440CrossRefGoogle Scholar
  25. 25.
    Guo Z B, Du Y W, Zhu J S, Huang H, Ding W P and Feng D 1997 Phys. Rev. Lett. 78 1142CrossRefGoogle Scholar
  26. 26.
    Reis M S, Amaral V S, Araújo J P, Tavares P B, Gomes A M and Oliveira I S 2005 Phys. Rev. B 71 144413CrossRefGoogle Scholar
  27. 27.
    Dong Q Y, Zhang H W, Sun J R, Shen B G and Franco V 2008 J. Appl. Phys. 103 116101CrossRefGoogle Scholar
  28. 28.
    Franco V, Blázquez J S and Conde A 2006 Appl. Phys. Lett. 100 064307Google Scholar
  29. 29.
    Franco V and Conde A 2010 Int. J. Refrig. 33 465CrossRefGoogle Scholar
  30. 30.
    Franco V, Conde A, Kuz’min M D and Romero-Enrique J M 2009 J. Appl. Phys. 105 917CrossRefGoogle Scholar
  31. 31.
    Widom B 1965 J. Chem. Phys. 43 3898CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Laboratoire de Physique des Matériaux, Faculté des Sciences de SfaxUniversité de SfaxSfaxTunisia
  2. 2.Institut NéelCNRS-Université J. FourierGrenobleFrance

Personalised recommendations