Advertisement

Synthesis and characterization of Ni–\(\hbox {Si}_{3}\hbox {N}_{4}\) nanocomposite coatings fabricated by pulse electrodeposition

  • Seyyed Mohammad NooriEmail author
Article

Abstract

Pure Ni and Ni–silicon nitride \((\hbox {Si}_{3}\hbox {N}_{4})\) nanocomposite coatings have been successfully fabricated on copper substrates by a pulse electrodeposition method employing the Watts bath. The obtained coatings were characterized with X-ray diffractometry and scanning electron microscopy. Also, surface hardness and the corrosion behaviour of the coatings were analysed by potentiodynamic polarization and electrochemical impedance spectroscopy in a 3.5% NaCl solution. It was found that incorporation of \(\hbox {Si}_{3}\hbox {N}_{4}\) particulates has reduced the crystallite size and also changed the growth orientation of the crystallite from (111) to (220) and (200) crystal planes. The co-deposition of \(\hbox {Si}_{3}\hbox {N}_{4}\) in the Ni matrix led to better properties of these coatings. Accordingly, the hardness value of nanocomposite coatings was about 80–140 Hv higher than that of pure nickel due to dispersion-strengthening and matrix grain refining and increased with the enhancement of incorporating \(\hbox {Si}_{3}\hbox {N}_{4}\) particle content. The presence of the \(\hbox {Si}_{3}\hbox {N}_{4}\) particulates slightly decreases the current efficiency. The current efficiency was decreased by increasing current density from 1 to 4 A \(\hbox {dm}^{-2}\). Moreover, the corrosion resistance of nanocomposite coatings was significantly higher than the pure Ni deposit. Also, the Ni–\(\hbox {Si}_{3}\hbox {N}_{4}\) coating produced at a density of 4 A \(\hbox {dm}^{-2}\) showed the lowest corrosion rate (0.05 mpy).

Keywords

Composite coating pulse electrodeposition co-deposition hardness corrosion 

References

  1. 1.
    Hou K H, Sheu H H and Ger M D 2014 Appl. Surf. Sci. 308 372CrossRefGoogle Scholar
  2. 2.
    Aruna S T and Srinivas G 2015 Surf. Eng. 31 708CrossRefGoogle Scholar
  3. 3.
    Bajwa R S, Khan Z, Bakolas V and Braun W 2016 Acta Metall. Sin. 29 8CrossRefGoogle Scholar
  4. 4.
    Agarwala R C and Agarwala V 2003 Sadhana 28 475CrossRefGoogle Scholar
  5. 5.
    Eslami M, Saghafian H and Golestani-fard F 2014 Appl. Surf. Sci. 300 129CrossRefGoogle Scholar
  6. 6.
    Bakhit B, Akbari A, Nasirpouri F and Hosseini M G 2014 Appl. Surf. Sci. 307 351CrossRefGoogle Scholar
  7. 7.
    Gheorghies C, Carac G and Stasi I V 2006 J. Optoelectron. Adv. Mater8 1234Google Scholar
  8. 8.
    Chen X H, Chen C S, Xiao H N, Cheng F Q, Zhang G and Yi G J 2005 Surf. Coat. Technol. 191 351CrossRefGoogle Scholar
  9. 9.
    Kang J X, Zhao W Z and Zhang G F 2009 Surf. Coat. Technol. 203 1815CrossRefGoogle Scholar
  10. 10.
    Reddy R M, Praveen B M, Chandrappa K G and Nayana K O 2016 Surf. Eng. 32 501CrossRefGoogle Scholar
  11. 11.
    Lajevardi S A and Shahrabi T 2010 Appl. Surf. Sci. 256 6775CrossRefGoogle Scholar
  12. 12.
    Zoikis-Karathanasis A, Pavlatou E A and Spyrellis N 2010 J. Alloy Compd. 494 396CrossRefGoogle Scholar
  13. 13.
    Asnavandi M, Ghorbani M and Kahram M 2013 Surf. Coat. Technol. 216 207CrossRefGoogle Scholar
  14. 14.
    Lekka M, Zendron G, Zanella C, Lanzutti A, Fedrizzi L and Bonora P L 2011 Surf. Coat. Technol. 205 3438CrossRefGoogle Scholar
  15. 15.
    Ramalingam S, Muralidharan V S and Subramania A 2009 J. Solid State Electrochem. 13 1777CrossRefGoogle Scholar
  16. 16.
    Srivastava M, Grips V W and Rajam K S 2008 Mater. Lett. 62 3487CrossRefGoogle Scholar
  17. 17.
    Li Q, Yang X, Zhang L, Wang J and Chen B 2009 J. Alloy Compd482 339CrossRefGoogle Scholar
  18. 18.
    Reddy R M, Praveen B M, Kumar C P and Venkatesha T V 2017 Surf. Eng. Appl. Electrochem. 53 258CrossRefGoogle Scholar
  19. 19.
    Kasturibai S and Kalaignan G P 2014 Bull. Mater. Sci. 37 721CrossRefGoogle Scholar
  20. 20.
    Arghavanian R and Parvini-Ahmadi N 2011 J. Solid State Electrochem. 15 2199CrossRefGoogle Scholar
  21. 21.
    Zhu J, Liu L, Hu G, Shen B, Hu W and Ding W 2004 Mater. Lett. 58 1634CrossRefGoogle Scholar
  22. 22.
    Shi L, Sun C, Gao P, Zhou F and Liu W 2006 Appl. Surf. Sci. 252 3591CrossRefGoogle Scholar
  23. 23.
    Shewmon P ed. 2016 Diffusion in solids (Berlin: Springer)Google Scholar
  24. 24.
    Chen L, Wang L, Zeng Z and Xu T 2006 Surf. Coat. Technol. 201 599CrossRefGoogle Scholar
  25. 25.
    Pathak S et al 2011 Surf. Coat. Technol. 205 3651CrossRefGoogle Scholar
  26. 26.
    Godon A et al 2011 Mater. Charact. 62 164CrossRefGoogle Scholar
  27. 27.
    Guglielmi N 1972 J. Electrochem. Soc. 119 1009CrossRefGoogle Scholar
  28. 28.
    Gül H, Kılıç F, Uysal M, Aslan S, Alp A and Akbulut H 2012 Appl. Surf. Sci. 258 4260CrossRefGoogle Scholar
  29. 29.
    Sajjadnejad M, Omidvar H, Javanbakht M and Mozafari A 2017 J. Alloy Compd. 704 809CrossRefGoogle Scholar
  30. 30.
    Solmaz R, Altunbaş E and Kardaş G 2011 Mater. Chem. Phys. 125 796CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.School of Metallurgy and Materials Engineering, College of EngineeringUniversity of TehranTehranIran

Personalised recommendations