Effects of doping \(\hbox {Pr}^{3+}\) and \(\hbox {Gd}^{3+}\) into YAG:Ce phosphors on the luminescence properties

  • Shihong TongEmail author


A series of \((\hbox {Y}_{0.98-x-y}\hbox {Ce}_{0.02}\hbox {Pr}_{x}\hbox {Gd}_{y})_{3}\hbox {Al}_{5}\hbox {O}_{12}\) (\(x=0{-}0.02\), \(y=0,\,0.3\)) phosphors were prepared by a modified co-precipitation method. The phases, luminescence properties, effect of calcination temperature on luminescence properties and energy transfer (ET) were investigated. The results indicated that the doping of \(\hbox {Pr}^{3+}\) and \(\hbox {Gd}^{3+}\) in all samples did not produce any new phases but caused a slight lattice expansion. The series of (\(\hbox {Y}_{0.98-x}\hbox {Ce}_{0.02}\hbox {Pr}_{x})_{3}\hbox {Al}_{5}\hbox {O}_{12}\) phosphors emit additional red light at 612 nm, and when \(x=0.005\), the red/yellow ratio of the emission spectrum is the largest. Compared with the (\(\hbox {Y}_{0.975}\hbox {Ce}_{0.02}\hbox {Pr}_{0.005})_{3}\hbox {Al}_{5}\hbox {O}_{12}\) phosphor, continued doping 30 at% \(\hbox {Gd}^{3+}\) in the (\(\hbox {Y}_{0.675}\hbox {Ce}_{0.02}\hbox {Pr}_{0.005}\hbox {Gd}_{0.3})_{3}\hbox {Al}_{5}\hbox {O}_{12}\) sample makes the peak wavelength of yellow light emission shift from 533 to 561 nm. Doping \(\hbox {Pr}^{3+}\) and \(\hbox {Gd}^{3+}\) results in the decrease of integrated emission intensity, but the emission intensity and the red/yellow ratio can be increased by raising the calcination temperature. In addition, there is only the ET from \(\hbox {Ce}^{3+}\) to \(\hbox {Pr}^{3+}\) in the (\(\hbox {Y}_{0.675}\hbox {Ce}_{0.02}\hbox {Pr}_{0.005}\hbox {Gd}_{0.3})_{3}\hbox {Al}_{5}\hbox {O}_{12}\) sample.


Co-precipitation YAG:Ce phosphor white-light LED energy transfer 



This research is supported by the Technology Fund of Sichuan Provincial Education Department under Grant 16ZA0059.


  1. 1.
    Pan Y X, Wu M M and Su Q 2004 J. Phys. Chem. Solids 65 845CrossRefGoogle Scholar
  2. 2.
    Schubert E F and Kim J K 2005 Science 308 1274CrossRefGoogle Scholar
  3. 3.
    Nishiura S, Tanabe S, Fujioka K and Fujimoto Y 2011 Opt. Mater. 33 688CrossRefGoogle Scholar
  4. 4.
    Jung H C, Park J Y, Seeta Rama Raju G, Choi B C, Jeong J H and Moon B K 2011 J. Am. Ceram. Soc. 94 551CrossRefGoogle Scholar
  5. 5.
    Ye S, Xiao F, Pan Y X, Ma Y Y and Zhang Q Y 2010 Mater. Sci. Eng. Rep. 71 1CrossRefGoogle Scholar
  6. 6.
    Schlotter P, Schmidt R and Schneider J 1997 Appl. Phys. A: Mater. Sci. Process 64 417CrossRefGoogle Scholar
  7. 7.
    Nakamura S, Senoh M, Iwasa N and Nagahama S 1995 Appl. Phys. Lett. 67 1868CrossRefGoogle Scholar
  8. 8.
    Mueller-Mach R, Mueller G O, Krames M R and Trottier T 2002 IEEE J. Sel. Top. Quantum Electron. 8 339CrossRefGoogle Scholar
  9. 9.
    Huh Y D, Cho Y S and Do Y R 2002 Bull. Korean Chem. Soc. 23 1435CrossRefGoogle Scholar
  10. 10.
    Jang H S, Im W B, Lee D C, Jeon D Y and Kim S S 2007 J. Lumin. 126 371CrossRefGoogle Scholar
  11. 11.
    Kottaisamy M, Thiyagarajan P, Mishra J and Ramachandra Rao M S 2008 Mater. Res. Bull. 43 1657CrossRefGoogle Scholar
  12. 12.
    Shi H, Zhu C, Huang J et al 2014 Opt. Mater. Express 4 649CrossRefGoogle Scholar
  13. 13.
    Shao Q Y, Li H J, Dong Y et al 2010 J. Alloy. Compd. 498 199CrossRefGoogle Scholar
  14. 14.
    Lin Y S, Liu R S and Cheng B M 2005 J. Electrochem. Soc. 152 J41CrossRefGoogle Scholar
  15. 15.
    Chawla S, Roy T, Majumder K and Yadav A 2014 J. Exp. Nanosci. 9 776CrossRefGoogle Scholar
  16. 16.
    Wang L, Zhang X, Hao Z D et al 2010 J. Appl. Phys. 108 093515CrossRefGoogle Scholar
  17. 17.
    Tong S H, Zhao J Y and Wen X 2016 Bull. Mater. Sci. 39 1CrossRefGoogle Scholar
  18. 18.
    Rack P D and Holloway P H 1998 Mater. Sci. Eng. Rep. 21 171CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.College of Sciences of Southwest Petroleum UniversityChengduPeople’s Republic of China

Personalised recommendations