Green synthesis, characterization and optical properties of eutectics and 1:1 intermolecular compounds: N,N-dimethylaminobenzaldehyde–anthranilic acid and 2-(4-(dimethylamino)benzylideneamino)benzoic acid–p-nitroaniline systems

  • U S RaiEmail author
  • Manjeet Singh
  • R N Rai


Phase diagrams of NN-dimethylaminobenzaldehyde (DMAB)–anthranilic acid (AA) and 2-(4-(dimethylamino)benzylideneamino)benzoic acid (DMABAB)–p-nitroaniline (PNA) systems, determined by the thaw-melt method, give two eutectics and a 1:1 intermolecular compound (IMC) in each case. Appropriate amounts (10 g) of each of the eutectics and the IMCs were prepared by a green synthetic method involving a solid state reaction without any solvent. These materials were characterized by X-ray diffraction, thermal and spectral methods and the optical properties of the pure components and the IMCs were studied. While negative values of heat of mixing in the case of a DMAB–AA system suggest clustering of molecules in both eutectic melts, those of positive value in \(\hbox {E}_{1}\) and negative value in \(\hbox {E}_{2}\) of the DMABAB–PNA system indicate the formation of a quasi-eutectic structure in \(\hbox {E}_{1}\) melt and clustering of molecules in \(\hbox {E}_{2}\) melt. The IMC of DMAB–AA system shows strong dual emission with two \(\lambda _{\mathrm{max}} \) one at 380 nm and the second at 450 nm with a total quantum efficiency of 0.49. The IMC of DMABAB–PNA system also shows a similar observation with two \(\lambda _{\mathrm{max}} \) one at 390 nm and second at 435 nm with a total quantum efficiency of 0.31.


Phase-diagram inter-molecular compound heat of fusion powder XRD optical properties 



One of the authors (Dr Manjeet Singh) would like to thank UGC for providing a research fellowship.


  1. 1.
    Rudrakshi G B, Pathak J P and Ojha S N 2002 Indian Foundry J. 48 17Google Scholar
  2. 2.
    Ellott R 1983 Eutectic solidification processing (London: Butterworths)Google Scholar
  3. 3.
    Majumdar B and Chattopdhyay K 2000 Metall. Mater. Trans 31A 1Google Scholar
  4. 4.
    Facchetti A, Yoon M H and Marks T J 2005 Adv. Mater. 17 1705CrossRefGoogle Scholar
  5. 5.
    Forest S R 2004 Nature 428 911CrossRefGoogle Scholar
  6. 6.
    Loo Y L and McCulloch I 2008 Mater. Res. Bull. 33 353Google Scholar
  7. 7.
    Horiuchi S and Tokura Y 2008 Nat. Mater. 7 357CrossRefGoogle Scholar
  8. 8.
    Horiuchi S, Kumari R and Tokura Y 2007 Angew. Chem. Int. Ed. 46 3497CrossRefGoogle Scholar
  9. 9.
    Desiraju G R 1995 Angew. Chem. Int. Ed. Engl. 34 2311CrossRefGoogle Scholar
  10. 10.
    Rai R N, Reddi R S B and Rai U S 2013 Prog. Cryst. Growth Character. Mater. 59 73CrossRefGoogle Scholar
  11. 11.
    Muthuraman R, Masse R, Nicoud J F and Desiraju G R 2001 Chem. Mater. 13 1473CrossRefGoogle Scholar
  12. 12.
    Costa M C, Rolemberg M P, Boros L A D, Kralhenbu1hl M A, de Oliveira M G and Meirelles A J A 2007 J. Chem. Eng. Data 52 30CrossRefGoogle Scholar
  13. 13.
    Rice J W and Suuberg E M 2010 J. Chem. Thermodyn. 42 1356CrossRefGoogle Scholar
  14. 14.
    Dwivedi Y, Kant S, Rai R N and Rai S B 2010 Appl. Phys. B 101 639CrossRefGoogle Scholar
  15. 15.
    Rai R N, Mudunuri S R, Reddi R S B, Ganeshmurthi V S A K and Gupta S K 2011 J. Cryst. Growth 321 72CrossRefGoogle Scholar
  16. 16.
    Dean J A 1985 Lange’s handbook of chemistry (New York: McGraw-Hill)Google Scholar
  17. 17.
    Singh M, Pandey P, Rai R N and Rai U S 2013 J. Therm. Anal. Calorim. 113 977CrossRefGoogle Scholar
  18. 18.
    Dwivedi Y, Kant S, Rai S B and Rai R N 2011 J. Fluoresc. 21 1255CrossRefGoogle Scholar
  19. 19.
    Abbott A P, Capper G, Davies D L, Rasheed R K and Tambyrajah V 2003 Chem. Commun. 1 70CrossRefGoogle Scholar
  20. 20.
    Abbott A P, Boothby D, Capper G, Davies D L and Rasheed R K 2004 J. Am. Chem. Soc. 126 9142CrossRefGoogle Scholar
  21. 21.
    Rai R N and Varma K B R 2000 Mater. Lett. 44 284CrossRefGoogle Scholar
  22. 22.
    Stahly G P 2009 Cryst. Growth Des. 9 4212CrossRefGoogle Scholar
  23. 23.
    Rai R N 2004 J. Mater. Res. 19 1348CrossRefGoogle Scholar
  24. 24.
    Singh M, Rai R N and Rai U S 2011 Am. J. Anal. Chem. 2 953CrossRefGoogle Scholar
  25. 25.
    Rai U S and Rai R N 1998 J. Cryst. Growth 191 234CrossRefGoogle Scholar
  26. 26.
    Christian J W 1965 The theory of phase transformation in metals and alloys (Oxford: Pergamon Press) p. 992Google Scholar
  27. 27.
    Singh N, Singh N B, Rai U S and Singh O P 1985 Thermochim. Acta 95 291CrossRefGoogle Scholar
  28. 28.
    Rai R N and Rai U S 2000 Thermochim. Acta 363 23CrossRefGoogle Scholar
  29. 29.
    Kalsi P S 2005 Spectroscopy of organic compounds (India: New Age Publication) 6th edition p 1Google Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Institute of Science, Centre of Advanced StudyBanaras Hindu UniversityVaranasiIndia

Personalised recommendations