Advertisement

Impact of sulphurization environment on formation of \(\hbox {Cu}_{2}\hbox {ZnSnS}_{4}\) films using electron beam evaporated stacked metallic precursors

  • P K Kannan
  • Sushmita Chaudhari
  • Suhash R DeyEmail author
Article
  • 26 Downloads

Abstract

The superiority of copper zinc tin sulphide (\(\hbox {Cu}_{2}\hbox {ZnSnS}_{4}\); CZTS) over the existing absorber layer materials is inevitable owing to its cheap, non-toxic and earth abundant constituents with high absorption coefficient value. In the present study, CZTS films are prepared by sulphurizing electron beam deposited precursors of glass/Cu/Zn/Sn/Cu and glass/Cu/Sn/Zn/Cu stacking sequences in two different environments i.e., elemental S powder and 5% \(\hbox {H}_{2}\hbox {S}+\hbox {N}_{2}\) gas at different ramping rates. The effect of sulphurization environment and sulphurization ramping rate on the formation of CZTS is investigated using X-ray diffraction and Raman spectroscopy. The morphology and composition of the films are analysed respectively using field emission gun scanning electron microscopy and energy dispersive X-ray spectroscopy. It is observed that films prepared in elemental S powder at a low ramping rate exhibit better crystallinity with less impurity phases. The presence of ZnS is observed in all the films, while the presence of SnS is observed in films prepared with \(\hbox {H}_{2}\hbox {S}\) gas alone, thus concluding that sulphurization in the presence of elemental S powder at a low ramping rate is highly favourable for CZTS film formation. CZTS films with minor ZnS impurity with a bandgap of 1.48 eV is successfully fabricated by using a glass/Cu/Zn/Sn/Cu precursor stack.

Keywords

Electron beam evaporation ramping rate CZTS 

References

  1. 1.
    Altamura G and Vidal J 2016 Chem. Mater. 28 3540CrossRefGoogle Scholar
  2. 2.
    Ito K 2014 Copper zinc tin sulfide-based thin-film solar cells (UK: John Wiley & Sons)CrossRefGoogle Scholar
  3. 3.
    Kang 2016 Reported at PVSEC-36 by a research team led at DGIST in South Korea. A \(0.181~\text{cm}^{2}\) solar cell was certified at 13.80% by KIERGoogle Scholar
  4. 4.
    Wallace S K, Mitzi D B and Walsh A 2017 ACS Energy Lett. 2 776CrossRefGoogle Scholar
  5. 5.
    Chaudhari S, Kannan P K and Dey S R 2016 Thin Solid Films 612 456CrossRefGoogle Scholar
  6. 6.
    Chen S, Walsh A, Gong X G and Wei S H 2013 Adv. Mater. 25 1522CrossRefGoogle Scholar
  7. 7.
    Katagiri H, Yokota T, Sasaguchi N, Ohashi J, Hando S and Hoshino S 1997 Sol. Energy Mater. Sol. Cells 49 407CrossRefGoogle Scholar
  8. 8.
    Johnson M C, Wrasman C, Zhang X, Manno M, Leighton C and Aydil E S 2015 Chem. Mater. 27 2507CrossRefGoogle Scholar
  9. 9.
    Chaudhari S, Kannan P K and Dey S R 2016 Conf. Rec. IEEE Photovolt. Spec. Conf. p. 1429Google Scholar
  10. 10.
    Chaudhari S, Kannan P K and Dey S R 2017 Thin Solid Films 636 144CrossRefGoogle Scholar
  11. 11.
    Todorov T K, Tang J, Bag S, Gunawan O, Gokmen T, Zhu Y et al 2013 Adv. Energy Mater. 3 1CrossRefGoogle Scholar
  12. 12.
    Scragg J J, Dale P J and Peter L M 2009 Thin Solid Films 517 2481CrossRefGoogle Scholar
  13. 13.
    Kim J and Yoo H 2011 Sol. Energy Mater. Sol. Cells 95 239CrossRefGoogle Scholar
  14. 14.
    Araki H, Mikaduki A, Kubo Y, Sato T, Jimbo K, Maw W S et al 2008 Thin Solid Films 517 1457CrossRefGoogle Scholar
  15. 15.
    Su C-Y, Yen Chiu C and Ting J-M 2015 Sci. Rep. 5 9291CrossRefGoogle Scholar
  16. 16.
    Katagiri H, Saitoh K, Washio T, Shinohara H, Kurumadani T and Miyajima S 2001 Sol. Energy Mater. Sol. Cells 65 141CrossRefGoogle Scholar
  17. 17.
    Shin S W, Pawar S M, Park C Y, Yun J H, Moon J H, Kim J H et al 2011 Sol. Energy Mater. Sol. Cells 95 3202CrossRefGoogle Scholar
  18. 18.
    Wang W, Winkler M T, Gunawan O, Gokmen T, Todorov T K, Zhu Y et al 2014 Adv. Energy Mater. 4 1CrossRefGoogle Scholar
  19. 19.
    Collord A D and Hillhouse H W 2015 Chem. Mater. 27 1855CrossRefGoogle Scholar
  20. 20.
    Thota N, Gurubhaskar M, Sunil M A, Prathap P, Subbaiah Y P V and Tiwari A 2017 Appl. Surf. Sci. 396 644CrossRefGoogle Scholar
  21. 21.
    Olgar M A, Klaer J, Mainz R, Levcenco S, Just J, Bacaksiz E et al 2016 Thin Solid Films 615 402CrossRefGoogle Scholar
  22. 22.
    Khalil M I, Bernasconi R, Ieffa S, Lucotti A, Le Donne A, Binetti S et al 2015 ECS Trans. 64 33CrossRefGoogle Scholar
  23. 23.
    Scragg J J 2011 Copper zinc tin sulfide thin films for photovoltaics – synthesis and characterisation by electrochemical methods (Berlin: Springer)CrossRefGoogle Scholar
  24. 24.
    Chaudhari S, Kannan P K and Dey S R 2017 Thin Solid Films 636 144CrossRefGoogle Scholar
  25. 25.
    Dumcenco D and Huang Y-S 2013 Opt. Mater. (Amst). 35 419CrossRefGoogle Scholar
  26. 26.
    Rajesh G, Muthukumarasamy N, Subramaniam E P, Agilan S and Velauthapillai D 2013 J. Sol-Gel Sci. Technol. 66 288CrossRefGoogle Scholar
  27. 27.
    Thankalekshmi R R and Rastogi A C 2015 42nd Photovolt. Spec. Conf. PVSC 2015 Google Scholar
  28. 28.
    Patel K, Shah D V and Kheraj V 2015 J. Alloys Compd. 622 942CrossRefGoogle Scholar
  29. 29.
    Cheng Y C, Jin C Q, Gao F, Wu X L, Zhong W, Li S H et al 2009 J. Appl. Phys. 106 1Google Scholar
  30. 30.
    Jiang F, Shen H, Wang W and Zhang L 2011 Appl. Phys. Express 4 074101CrossRefGoogle Scholar
  31. 31.
    Pani B, Singh R K and Singh U P 2015 J. Alloys Compd. 648 332CrossRefGoogle Scholar
  32. 32.
    Guan H, Shen H, Gao C and He X 2013 J. Mater. Sci. Mater. Electron. 24 1490CrossRefGoogle Scholar
  33. 33.
    Xia D, Lei P, Zheng Y and Zhou B 2015 J. Mater. Sci. Mater. Electron. 26 5426CrossRefGoogle Scholar
  34. 34.
    Mkawi E M, Ibrahim K, Ali M K M and Mohamed A S 2013 Int. J. Electrochem. Sci. 8 359Google Scholar
  35. 35.
    Caballero R, Garcia-Llamas E, Merino J M, León M, Babichuk I, Dzhagan V et al 2014 Acta Mater. 65 412CrossRefGoogle Scholar
  36. 36.
    Grossberg M, Krustok J, Raudoja J, Timmo K, Altosaar M and Raadik T 2011 Thin Solid Films 519 7403CrossRefGoogle Scholar
  37. 37.
    Alzaidy G A, Huang C and Hewak D W 2015 11th Photovolt. Sci. Appl. Technol. Conf. (PVSAT-11), Leeds, GBGoogle Scholar
  38. 38.
    Mangan T C, McCandless B E, Dobson K D and Birkmire R W 2015 J. Appl. Phys. 118 65303CrossRefGoogle Scholar
  39. 39.
    Ahmad R, Brandl M, Distaso M, Herre P, Spiecker E, Hock R et al 2015 CrystEngComm 17 6972CrossRefGoogle Scholar
  40. 40.
    Mainz R, Walker B C, Schmidt S S, Zander O, Weber A, Rodriguez-Alvarez H et al 2013 Phys. Chem. Chem. Phys. 15 18281CrossRefGoogle Scholar
  41. 41.
    Hock R, Kirbs A, Schurr R, Voß T, Jost S, Weber A et al 2009 Thin Solid Films 517 2465CrossRefGoogle Scholar
  42. 42.
    Unveroglu B and Zangari G 2016 Electrochim. Acta 219 664CrossRefGoogle Scholar
  43. 43.
    Feng Y, Yu B, Cheng G, Lau T, Li Z, Yin L et al 2015 J. Mater. Chem. C 3 9650CrossRefGoogle Scholar
  44. 44.
    Suresh Babu G, Kishore Kumar Y B, Uday Bhaskar P and Raja Vanjari S 2010 Sol. Energy Mater. Sol. Cells 94 221CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  • P K Kannan
    • 1
  • Sushmita Chaudhari
    • 1
  • Suhash R Dey
    • 1
    Email author
  1. 1.Department of Materials Science and Metallurgical EngineeringIndian Institute of Technology HyderabadKandi, SangareddyIndia

Personalised recommendations