Advertisement

Preparation of Cu nanoparticles by a pulsed wire evaporation process for conductive ink applications

  • Dong-Jin Lee
  • Fan-Long Jin
  • Soo-Jin ParkEmail author
Article
  • 25 Downloads

Abstract

In the present study, Cu colloidal nanoparticles and nanopowders were successfully synthesized by a pulsed wire evaporation process. Cu-based nano-inks were prepared by mixing Cu nanoparticles with acrylic resin and solvent. Cu nanoparticles with a particle size of < 20 nm were uniformly dispersed in ethylene glycol. The Cu nanopowders were successfully coated with an organic solvent composed of a hydrocarbon compound. This organic coating effectively inhibited the oxidation of Cu nanopowders. In addition, the stability of dispersion of Cu nanoparticles in the inks was improved by a ball-milling process. The electrical conductivity of the prepared Cu nano-inks was 10–28 \(\upmu \)S cm\(^{-1}\) for 20–40 wt% of Cu.

Keywords

Cu nanoparticles nanopowders electrical conductivity 

Notes

Acknowledgements

This research was supported by Traditional Culture Convergence Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (Grant number 2018M3C1B5052283) and Korea Evaluation Institute of Industrial Technology (KEIT) through the Carbon Cluster Construction project [10083586, Development of petroleum based graphite fibers with ultra-high thermal conductivity] funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).

References

  1. 1.
    Cankurtaran H, Karadayi E B and Sungur S 2016 Prog. Org. Coat. 98 6CrossRefGoogle Scholar
  2. 2.
    Dong Y, Li X, Liu S, Zhu Q, Zhang M, Li J G et al 2016 Thin Solid Films 616 635CrossRefGoogle Scholar
  3. 3.
    Graves J E, Sugden M, Litchfield R E, Hutt D A, Mason T J and Cobley A J 2016 Ultrason. Sonochem. 29 428CrossRefGoogle Scholar
  4. 4.
    Zhang Y, Wu L, Guo X, Jung Y G and Zhang J 2016 Comput. Mater. Sci. 125 105CrossRefGoogle Scholar
  5. 5.
    Gadea C, Marani D and Esposito V 2017 J. Phys. Chem. Solids 101 10CrossRefGoogle Scholar
  6. 6.
    Zhu L, Jin F L and Park S J 2012 Bull. Korean Chem. Soc. 33 2513CrossRefGoogle Scholar
  7. 7.
    Ammosova L, Jiang Y, Suvanto M and Pakkanen T A 2017 Appl. Surf. Sci. 401 353CrossRefGoogle Scholar
  8. 8.
    Lee S, Choi D, Piao H and Son Y 2016 Microelectron. Eng. 163 98CrossRefGoogle Scholar
  9. 9.
    Zhang W, Bi E, Li M and Gao L 2016 Colloids Surf. A 490 232Google Scholar
  10. 10.
    Jiang W, Jin F L and Park S J 2012 J. Ind. Eng. Chem. 18 594CrossRefGoogle Scholar
  11. 11.
    Ida K, Tomonari M, Sugiyama Y, Chujyo Y, Tokunaga T, Yonezawa T et al 2012 Thin Solid Films 520 2789CrossRefGoogle Scholar
  12. 12.
    Liu Q, Li L, Cai N, Saidi W A and Zhou G 2014 Surf. Sci. 627 75CrossRefGoogle Scholar
  13. 13.
    Li W and Chen M 2014 Appl. Surf. Sci. 290 240CrossRefGoogle Scholar
  14. 14.
    Jeong S, Woo K, Kim D, Lim S, Kim J S, Shin H et al 2008 Adv. Funct. Mater. 18 679CrossRefGoogle Scholar
  15. 15.
    Li J, Wang G and Zhou G 2016 Surf. Sci. 649 39CrossRefGoogle Scholar
  16. 16.
    Pospiech D, Jehnichen D, Starke S, Müller F, Bünker T, Wollenberg A et al 2017 Appl. Surf. Sci. 399 205CrossRefGoogle Scholar
  17. 17.
    Zhang C, Cai J, Lv P, Zhang Y, Xia H and Guan Q 2017 J. Alloys Compd. 697 96CrossRefGoogle Scholar
  18. 18.
    Lou T, Qiang H and Chen Z 2017 Talanta 163 132CrossRefGoogle Scholar
  19. 19.
    Liu Q, Zhou D, Yamamoto Y, Kuruda K and Okido M 2012 Trans. Nonferrous Met. Soc. China 22 2991CrossRefGoogle Scholar
  20. 20.
    Wen Y, Huang W, Wang B, Fan J, Gao Z and Yin L 2012 Mater. Sci. Eng. B 177 619CrossRefGoogle Scholar
  21. 21.
    Kapoor S, Palit D K and Mukherjee T 2002 Chem. Phys. Lett. 355 383CrossRefGoogle Scholar
  22. 22.
    Qiu S, Dong J and Chen G 1999 J. Colloid Interface Sci. 216 230CrossRefGoogle Scholar
  23. 23.
    Ke T, Le Y, Wang J, Chu G W, Chen J F and Shao L 2010 Mater. Lett. 64 1717CrossRefGoogle Scholar
  24. 24.
    Haque M M, Cho D and Lee C S 2013 Thin Solid Films 536 32CrossRefGoogle Scholar
  25. 25.
    Yu W, Xie H, Chen L, Li Y and Zhang C 2009 Nanoscale Res. Lett. 4 465CrossRefGoogle Scholar
  26. 26.
    Galo C T and Ricardo O C 1998 Mater. Res. Bull. 33 1599CrossRefGoogle Scholar
  27. 27.
    Gain A K and Zhang L 2014 J. Alloys Compd. 617 779CrossRefGoogle Scholar
  28. 28.
    Lee D J, Choi H S, Jin F L and Park S J 2015 J. Ind. Eng. Chem. 27 322CrossRefGoogle Scholar
  29. 29.
    Krasovskii P V, Samokhin A V, Fadeev A A and Alexeev N V 2016 Adv. Powder Technol. 27 1669CrossRefGoogle Scholar
  30. 30.
    Lee D J, Choi H S, Jin F L and Park S J 2015 J. Ind. Eng. Chem. 25 5CrossRefGoogle Scholar
  31. 31.
    Hedberg Y S, Pradhan S, Cappellini F, Karlsson M E, Blomberg E, Karlssonc H L et al 2016 Electrochim. Acta 212 360CrossRefGoogle Scholar
  32. 32.
    Neyertz C A, Gallo A D, Ulla M A and Zamaro J M 2016 Surf. Coat. Technol. 285 262CrossRefGoogle Scholar
  33. 33.
    Li W, Li W, Wei J, Tan J and Chen M 2014 Mater. Chem. Phys. 146 82CrossRefGoogle Scholar
  34. 34.
    Nariki S, Sakai N and Murakami M 2001 Phys. C 357360 811CrossRefGoogle Scholar
  35. 35.
    Kim D G, Min K H, Chang S Y, Oh S T, Lee C H and Kim Y D 2005 Mater. Sci. Eng. A 399 326Google Scholar
  36. 36.
    Tseng C C, Lin Y, Liu T Y, Nian Y Y, Wan M W and Ger M D 2013 Thin Solid Films 536 81CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Nano Technology Inc.Daedeok-GuRepublic of Korea
  2. 2.Department of Polymer Materials, Jilin Institute of Chemical TechnologyJilin CityPeople’s Republic of China
  3. 3.Department of ChemistryInha UniversityNam-Gu, IncheonRepublic of Korea

Personalised recommendations