Advertisement

Investigating structural features of Ba and Zr co-substituted strontium bismuth tantalate thin films

  • Mehmet S BozgeyikEmail author
Article
  • 44 Downloads

Abstract

Structural (crystal and microstructure), chemical and electronic states, and ferroelectric and electrical features of Ba and Zr co-substituted strontium bismuth tantalate (SBT) were probed in this study. Distinctly, Ba and Zr were substituted for Ta and Sr sites of \(\hbox {Sr}_{0.8}\hbox {Bi}_{2.2}\hbox {Ta}_{2}\hbox {O}_{9 }\) in the form of \(\hbox {Sr}_{0.8-x}\hbox {Ba}_{x}\hbox {Bi}_{2.2}\hbox {Ta}_{2-y}\hbox {Zr}_{y}\hbox {O}_{9}\). To investigate the impact of the co-substitution on the crystal structure, microstructure, ferroelectric and electrical properties, \(\hbox {Sr}_{0.8-x}\hbox {Ba}_{x}\hbox {Bi}_{2.2}\hbox {Ta}_{2-y}\hbox {Zr}_{y}\hbox {O}_{9}\) thin films were deposited on \(\hbox {Pt/Ti/}\hbox {SiO}_{2}/\hbox {Si}(100)\) wafers by sol–gel spin by coating method. Crystal structure, microstructure, chemical and electronic states, ferroelectric, capacitance and leakage current characteristics of the films were studied to investigate potential for one transistor type ferroelectric random access memories (1T-type FeRAMs). Successful substitutions up to 10 mol% lead to reduction of double remanent polarization \((2P_{\mathrm{r}})\) to \(10.26\,\upmu \hbox {C\,cm}^{-2}\), and dielectric constant \((\varepsilon _{\mathrm{r}})\) to 135. These values demonstrate that successful co-substitution of limited Ba and Zr in SBT with stable crystal structure has the ability to decrease \(P_{\mathrm{r}}\) and \(\varepsilon _{\mathrm{r}}\) values of the ferroelectric material which can be a candidate gate to be utilized in ferroelectric field-effect transistors (FeFETs) for 1T-type FeRAM applications.

Keywords

Crystal structure ion substitution strontium bismuth tantalate ferroelectric thin film 

Notes

Acknowledgements

The author acknowledges Japan Society for the Promotion of Science (JSPS) and Scientific and Technological Research Council of Turkey (TUBITAK). This work was partially supported by the Scientific Research Project Fund of Kahramanmaras Sutcu Imam University, Turkey, under the Project Number of 2013/4-25 M. The author is grateful to Professors H Ishiwara, K Shinozaki and J S Cross for laboratory facilities.

References

  1. 1.
    Mikolajick T, Slesazeck S, Park M H and Schroeder U 2018 MRS Bull. 43 340CrossRefGoogle Scholar
  2. 2.
    Medwal R, Gupta S, Pavunny S P, Katiyar R K, Thomas R and Katiyar R S 2018 J. Mater. Sci. 53 4274CrossRefGoogle Scholar
  3. 3.
    Fengler F P G, Nigon R, Muralt P, Grimley E D, Sang X H, Sessi V et al 2018 Adv. Electron. Mater. 4 1700547CrossRefGoogle Scholar
  4. 4.
    Shin H W and Son Y J 2018 Electron. Mater. Lett. 14 59CrossRefGoogle Scholar
  5. 5.
    Sugandha and Jha A K 2013 Ceram. Int. 39 9397Google Scholar
  6. 6.
    Sugandha and Jha A K 2013 Ferroelectrics 447 136CrossRefGoogle Scholar
  7. 7.
    Ma T P and Han J P 2002 IEEE Electron. Device Lett. 23 386CrossRefGoogle Scholar
  8. 8.
    Bozgeyik M S, Cross J S, Ishiwara H and Shinozaki K 2012 J. Electroceram. 28 158CrossRefGoogle Scholar
  9. 9.
    Yan K, Takahashi M and Sakai S 2012 Appl. Phys. A: Mater. 108 835CrossRefGoogle Scholar
  10. 10.
    Bozgeyik M S, Cross J S, Ishiwara H and Shinozaki K 2009 Mater. Sci. Eng. B 161 130CrossRefGoogle Scholar
  11. 11.
    Bozgeyik M S, Cross J S, Ishiwara H and Shinozaki K 2010 Microelectron. Eng. 87 2173CrossRefGoogle Scholar
  12. 12.
    Shimakawa Y, Kubo Y, Nakagawa Y, Kamiyama T, Asano H and Izumi F 1999 Appl. Phys. Lett. 74 1904CrossRefGoogle Scholar
  13. 13.
    Atsuki T, Soyama N, Yonezawa T and Ogi K 1995 Jpn. J. Appl. Phys. 1 34 5096CrossRefGoogle Scholar
  14. 14.
    Noguchi T, Hase T and Miyasaka Y 1996 Jpn. J. Appl. Phys. 1 35 4900CrossRefGoogle Scholar
  15. 15.
    Li Y B, Zhang S, Fei W D, Gan Z H and Mhaisalkar S 2007 Adv. Appl. Ceram. 106 180CrossRefGoogle Scholar
  16. 16.
    Kannan B R and Venkataraman B H 2014 J. Mater. Sci.: Mater. Electron. 25 4943Google Scholar
  17. 17.
    Golosov D A, Zavadski S M, Kolos V V and Turtsevich A S 2016 Phys. Solid State 58 50CrossRefGoogle Scholar
  18. 18.
    Kannan B R and Venkataraman B H 2016 Ferroelectrics 493 110CrossRefGoogle Scholar
  19. 19.
    Akazawa H and Ando H 2010 J. Appl. Phys. 108 083704CrossRefGoogle Scholar
  20. 20.
    Bozgeyik M S, Cross J S, Ishiwara H and Shinozaki K 2009 Jpn. J. Appl. Phys. 48 061403CrossRefGoogle Scholar
  21. 21.
    Miller S L and Mcwhorter P J 1992 J. Appl. Phys. 72 5999CrossRefGoogle Scholar
  22. 22.
    Chen H D, Udayakumar K R, Gaskey C J and Cross L E 1997 Integr. Ferroelectr. 15 89CrossRefGoogle Scholar
  23. 23.
    Scott J F, Melnick B M, McMillan L D, de Araujo C A P and Azuma M 1993 Ferroelectrics 150 209CrossRefGoogle Scholar
  24. 24.
    Kang S K and Ishiwara H 2002 Jpn. J. Appl. Phys. 1 41 6899CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of Metallurgy and Ceramics ScienceTokyo Institute of TechnologyMeguro-kuJapan
  2. 2.Department of Physics, Faculty of Science and LiteratureKahramanmaras Sutcu Imam UniversityKahramanmarasTurkey
  3. 3.Department of Materials Science and Engineering, Graduate School of Natural and Applied SciencesKahramanmaras Sutcu Imam UniversityKahramanmarasTurkey

Personalised recommendations