Effects of deposition parameters on the structure and properties of ZrN, WN and ZrWN films

  • C Y Wu
  • J H Chen
  • C G Kuo
  • M J Twu
  • S W Peng
  • C Y HsuEmail author


This paper examines optimal settings for deposition parameters for transition metal nitride (ZrN, WN and ZrWN) thin films that are deposited on tungsten carbide tools and glass substrates using direct current (DC) reactive sputtering with pure Zr and W metal targets and Ar plasma and \(\hbox {N}_{2}\) reactive gases. Experiments using the grey-Taguchi method are conducted to study the effects of deposition parameters (substrate plasma etching time, \(\hbox {N}_{2}/(\hbox {N}_{2} + \hbox {Ar})\) flow rate, deposition time and substrate temperature) on a film that is deposited on a cutting tool that is used for dry machining and on the films’ mechanical properties. The substrates’ surfaces are etched using oxygen plasma pretreatment. It is clear that the coated film is homogeneous, very compact and exhibits perfect adherence to the substrate. The results of grey relational analysis show for the dry turning AISI 304 stainless steel that the surface roughness is approximately \(R_{\mathrm{a}} = 0.70\, \, \upmu \hbox {m}\) and that the flank wear is approximately \(14.02 \, \,\upmu \hbox {m}\). The grey relational analysis shows that the period for which the substrate (tungsten carbide tool) is under plasma-etched pretreatment has the most significant effect on both the surface roughness and flank wear. The coated films are analysed using scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), transmission electron microscopy (TEM), X-ray diffraction and a nano-indenter. The ternary nitride (ZrWN)-coated specimens exhibit better mechanical properties than binary nitride (ZrN and WN) specimens. The optimum ZrWN coating exhibits the greatest hardness (H), elastic modulus (E) and H / E values.


Transition metal nitride films grey-Taguchi method dry cutting TEM 



The authors gratefully acknowledge the support of the Ministry of Science and Technology of the Republic of China, through Grant No. MOST 105-2221-E-262-005.


  1. 1.
    Subramanian B, Prabakaran K and Jayachandran M 2012 Bull. Mater. Sci. 35 505CrossRefGoogle Scholar
  2. 2.
    Hernandez-Torres J, Garcia-Gonzalez L, Zamora-Peredo L, Hernandez-Quiroz T, Sauceda-Carvajal A, Garcia-Ramirez P J et al 2012 Bull. Mater. Sci. 35 733CrossRefGoogle Scholar
  3. 3.
    Dubey P, Dave V, Srivastava S, Singh D and Chandra R 2013 Surf. Coat. Technol. 237 205CrossRefGoogle Scholar
  4. 4.
    Kim G S, Kim B S, Lee S Y and Hahn J H 2005 Surf. Coat. Technol. 200 1669CrossRefGoogle Scholar
  5. 5.
    Dubey P, Arya V, Srivastava S, Singh D and Chandra R 2013 Surf. Coat. Technol. 236 182CrossRefGoogle Scholar
  6. 6.
    Barshilia H C and Rajam K S 2003 Bull. Mater. Sci. 26 233CrossRefGoogle Scholar
  7. 7.
    Addepalli S and Suda U 2016 Bull. Mater. Sci. 39 789CrossRefGoogle Scholar
  8. 8.
    Jayabal S and Natarajan U 2011 Bull. Mater. Sci. 34 1563CrossRefGoogle Scholar
  9. 9.
    Gupta A, Singh H and Walia R S 2016 Bull. Mater. Sci. 39 1223CrossRefGoogle Scholar
  10. 10.
    Senthilkumar N, Tamizharasan T and Anandakrishnan V 2014 Measurement 58 520CrossRefGoogle Scholar
  11. 11.
    Sarıkaya M and Güllü A 2015 J. Clean Prod. 91 347CrossRefGoogle Scholar
  12. 12.
    Rodriguez P, Khatak H S and Gnanamoorthy J B 1994 Bull. Mater. Sci. 17 685CrossRefGoogle Scholar
  13. 13.
    Gassner M, Schalk N, Sartory B, Pohler M, Czettl C and Mitterer C 2017 Int. J. Refract. Met. Hard Mater. 69 234CrossRefGoogle Scholar
  14. 14.
    Hu C C, Lu T W, Chou C Y, Wang J T, Huang H H and Hsu C Y 2014 Bull. Mater. Sci. 37 1275CrossRefGoogle Scholar
  15. 15.
    Maille L, Aubert P, Sant C and Garnier P 2004 Surf. Coat. Technol. 180–181 483CrossRefGoogle Scholar
  16. 16.
    Yao S H, Su Y L, Kao W H and Cheng K W 2006 Surf. Coat. Technol. 201 2520CrossRefGoogle Scholar
  17. 17.
    Yilmaz F, Uzun O, Kolemen U, Kilicaslan M F, Basman N, Ergen S et al 2013 Bull. Mater. Sci. 36 1139CrossRefGoogle Scholar
  18. 18.
    Barshilia H C and Rajam K S 2004 Bull. Mater. Sci. 27 35CrossRefGoogle Scholar
  19. 19.
    Cabibbo M, Clemente N, Mehtedi M E, Hamouda A H, Musharavati F, Santecchia E et al 2015 Surf. Coat. Technol. 275 155CrossRefGoogle Scholar
  20. 20.
    Fan X, Nose K, Diao D and Yoshida T 2013 Appl. Surf. Sci. 273 816CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  • C Y Wu
    • 1
  • J H Chen
    • 2
  • C G Kuo
    • 2
  • M J Twu
    • 3
  • S W Peng
    • 3
  • C Y Hsu
    • 4
    Email author
  1. 1.Marine CollegeBeibu Gulf UniversityQinzhouPeople’s Republic of China
  2. 2.Department of Industrial EducationNational Taiwan Normal UniversityTaipeiTaiwan
  3. 3.Department of Mechatronic EngineeringNational Taiwan Normal UniversityTaipeiTaiwan
  4. 4.Department of Mechanical EngineeringLunghwa University of Science and TechnologyTaoyuanTaiwan

Personalised recommendations