Laccase immobilized onto graphene oxide nanosheets and electrodeposited gold–cetyltrimethylammonium bromide complex to fabricate a novel catechol biosensor

  • Maryam Nazari
  • Soheila KashanianEmail author
  • Nasim Maleki
  • Nahid Shahabadi


In this study, a new biosensor is developed with reliable and easy-to-use biodevice properties for catechol determination in real samples. A method is proposed for the fabrication of biosensors to sense catechol based on the adsorption method of laccase immobilization. Hence, a glassy carbon electrode was modified via graphene oxide nanosheets and then it was modified with a gold–cetyltrimethylammonium bromide nanocomposite to adsorb and immobilize laccase on the electrode surface. The results showed laccase immobilization onto the reformed glassy carbon electrode, and a direct electron transfer reaction between laccase and the electrode. The mechanism of electron transferring was \(\hbox {EC}^{\prime }\). Also, \(k_{\mathrm{s}}\) and \(\alpha \) were calculated as \(0.41\, \hbox {s}^{-1}\) and 0.33, respectively. For this biosensor two linear ranges, \(0.1\times 10^{-6}\) to \(5\times 10^{-6}\) M and \(16.7\times 10^{-6}\) to \(166\times 10^{-6}\) M, and a detection limit of \(1.5\times 10^{-6}\) M were obtained.


Biosensor laccase graphene oxide gold–cetyltrimethylammonium bromide complex catechol 


  1. 1.
    Chen H, Yao J, Wang F, Zhou Y, Chen K, Zhuang R et al 2010 Sci. Total Environ. 408 1043CrossRefGoogle Scholar
  2. 2.
    Han E, Yang Y, He Z, Cai J, Zhang X and Dong X 2015 Anal. Biochem. 486 102CrossRefGoogle Scholar
  3. 3.
    Wang C, Feng Y, Gao P, Ren N and Li B L 2012 Sci. Total Environ. 431 366CrossRefGoogle Scholar
  4. 4.
    Zhou X H, Liu L H, Bai X and Shi H C 2013 Sens. Actuators B Chem. 181 661CrossRefGoogle Scholar
  5. 5.
    Gorla F A, Duarte E H, Sartori E R and Tarley C R T 2016 Microchem. J. 124 65CrossRefGoogle Scholar
  6. 6.
    Ren J, Kang T F, Xue R, Ge C N and Cheng S Y 2011 Microchim. Acta 174 303CrossRefGoogle Scholar
  7. 7.
    Feng S, Zhang Y, Zhong Y, Li Y and Li S 2014 J. Electroanal. Chem. 733 1CrossRefGoogle Scholar
  8. 8.
    Maya F, Estela J M and Cerdà V 2010 Talanta 81 1CrossRefGoogle Scholar
  9. 9.
    Yang J, Li D, Fu J, Huang F and Wei Q 2016 J. Electroanal. Chem. 766 16CrossRefGoogle Scholar
  10. 10.
    Nazari M, Kashanian S and Rafipour R 2015 Spectrochim. Acta, Part A 145 130CrossRefGoogle Scholar
  11. 11.
    Li D W, Luo L, Lv P F, Wang Q Q, Lu K Y, Wei A F et al 2016 Bioinorg. Chem. Appl. 2016 5360361 10Google Scholar
  12. 12.
    Karim F and Fakhruddin A 2012 Rev. Environ. Sci. Biotechnol. 11 261CrossRefGoogle Scholar
  13. 13.
    Mohammad R, Ahmad M and Heng L Y 2013 Sensors 13 10014CrossRefGoogle Scholar
  14. 14.
    Wu C, Liu Z, Sun H, Wang X and Xu P 2016 Biosens. Bioelectron. 79 843CrossRefGoogle Scholar
  15. 15.
    Rodríguez-Delgado M M, Alemán-Nava G S, Rodríguez-Delgado J M, Dieck-Assad G, Martínez-Chapa S O, Barceló D et al 2015 TrAC, Trends Anal. Chem. 74 21CrossRefGoogle Scholar
  16. 16.
    Cabaj J, Jędrychowska A, Zając D, Krawiec S and Sołoducho J 2016 Int. J. Electrochem. Sci. 11 609Google Scholar
  17. 17.
    Chen B, Xu W Q, Pan X R and Lu L 2015 Int. J. Biol. Macromol. 76 39CrossRefGoogle Scholar
  18. 18.
    Vasilescu I, Eremia S A V, Kusko M, Radoi A, Vasile E and Radu G L 2016 Biosens. Bioelectron. 75 232CrossRefGoogle Scholar
  19. 19.
    Morozova O, Shumakovich G, Shleev S and Yaropolov Y I 2007 Appl. Biochem. Microbiol. 43 523CrossRefGoogle Scholar
  20. 20.
    Dai Z, Guo M, Wang X, Wang H and Chen W 2014 J. Nanomater. 2014 2Google Scholar
  21. 21.
    Portaccio M, Di Tuoro D, Arduini F, Moscone D, Cammarota M, Mita D G et al 2013 Electrochim. Acta 109 340CrossRefGoogle Scholar
  22. 22.
    Franzoi A C, Vieira I C, Dupont J, Scheeren C W and de Oliveira L F 2009 Analyst 134 2320CrossRefGoogle Scholar
  23. 23.
    Gutierrez-Sanchez C, Shleev S, De Lacey A L and Pita M 2015 Chem. Pap. 69 237CrossRefGoogle Scholar
  24. 24.
    Boujakhrout A, Jimenez-Falcao S, Martinez-Ruiz P, Sanchez A, Diez P, Pingarron J M et al 2016 Analyst 141 4162CrossRefGoogle Scholar
  25. 25.
    Yang L, Zhao H, Li Y and Li C P 2015 Sens. Actuators B 207 1CrossRefGoogle Scholar
  26. 26.
    Liu J, Lin G, Xiao C, Xue Y, Yang A, Ren H et al 2015 Biosens. Bioelectron. 71 82CrossRefGoogle Scholar
  27. 27.
    Veerapandian M, Lévaray N, Lee M H, Giasson S, Zhu X et al 2015 ACS Appl. Mater. Interfaces 7 14552CrossRefGoogle Scholar
  28. 28.
    Ma H, Yin B, Wang S, Jiao Y, Pan W, Huang S et al 2004 ChemPhysChem 5 68CrossRefGoogle Scholar
  29. 29.
    Bakshi M S, Sharma P and Banipal T S 2007 Mater. Lett. 61 5004CrossRefGoogle Scholar
  30. 30.
    Valezi C F, Duarte E H, Mansano G R, Dall’Antonia L H, Tarley C R T and Sartori E R 2014 Sens. Actuators B 205 234CrossRefGoogle Scholar
  31. 31.
    Khan Z, Al-Thabaiti S A and Bashir O 2016 Dyes Pigm. 124 210CrossRefGoogle Scholar
  32. 32.
    Rodríguez-Fernández J, Pérez-Juste J, Mulvaney P and Liz-Marzán L M 2005 J. Phys. Chem. B 109 14257CrossRefGoogle Scholar
  33. 33.
    Marcano D C, Kosynkin D V, Berlin J M, Sinitskii A, Sun Z, Slesarev A et al 2010 ACS Nano 4 4806CrossRefGoogle Scholar
  34. 34.
    Pavia D L, Lampman G M, Kriz G S and Vyvyan J A 2014 Introduction to spectroscopy, 5 edn (USA: Cengage Learning)Google Scholar
  35. 35.
    Song D, Xia J, Zhang F, Bi S, Xiang W, Wang Z et al 2015 Sens. Actuators B 206 111CrossRefGoogle Scholar
  36. 36.
    Chen R, Wang Q, Li Y, Gu Y, Tang L and Li C 2015 RSC Adv. 5 44165CrossRefGoogle Scholar
  37. 37.
    Quan D and Shin W 2004 Electroanalysis 16 1576CrossRefGoogle Scholar
  38. 38.
    Fan L, Li X and Kan X 2016 Electrochim. Acta 213 504CrossRefGoogle Scholar
  39. 39.
    Qi H and Zhang C 2005 Electroanalysis 17 832CrossRefGoogle Scholar
  40. 40.
    Qu J, Lou T, Wang Y, Dong Y and Xing H 2015 Anal. Lett. 48 1842CrossRefGoogle Scholar
  41. 41.
    Sarika C, Shivakumar M, Shivakumara C, Krishnamurthy G, Narasimha Murthy B and Lekshmi I 2017 Artif. Cells Nanomed. Biotechnol. 45 625CrossRefGoogle Scholar
  42. 42.
    Laviron E 1979 J. Electroanal. Chem. Interfacial Electrochem. 101 19CrossRefGoogle Scholar
  43. 43.
    Rafipour R, Kashanian S and Tarighat F A 2014 IET Nanobiotechnol. 8 196CrossRefGoogle Scholar
  44. 44.
    Li G, Sun K, Li D, Lv P, Wang Q, Huang F et al 2016 Colloids Surf. A 509 408CrossRefGoogle Scholar
  45. 45.
    Bard A J, Faulkner L R, Leddy J, Zoski C G 2001 Electro-chemical methods: fundamentals and applications, 2 edn. (New York: Wiley)Google Scholar
  46. 46.
    Guo M, Wang H, Huang D, Han Z, Li Q, Wang X et al 2014 J. Sci. Technol. Adv. Mater. 15 035005CrossRefGoogle Scholar
  47. 47.
    Fu J, Li D, Li G, Huang F and Wei Q 2015 J. Electroanal. Chem. 738 92CrossRefGoogle Scholar
  48. 48.
    Li D, Luo L, Pang Z, Ding L, Wang Q, Ke H et al 2014 ACS Appl. Mater. Interfaces 6 5144CrossRefGoogle Scholar
  49. 49.
    Shimomura T, Itoh T, Sumiya T, Hanaoka T, Mizukami F and Ono M 2011 Sens. Actuators B 153 361CrossRefGoogle Scholar
  50. 50.
    Maleki N, Kashanian S, Maleki E and Nazari M 2017 Biochem. Eng. J. 128 1CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  • Maryam Nazari
    • 1
    • 2
  • Soheila Kashanian
    • 1
    • 2
    Email author
  • Nasim Maleki
    • 1
  • Nahid Shahabadi
    • 1
    • 3
  1. 1.Faculty of ChemistryRazi UniversityKermanshahIran
  2. 2.Nano Drug Delivery Research Center, Faculty of PharmacyKermanshah University of Medical SciencesKermanshahIran
  3. 3.Medical Biology Research CenterKermanshah University of Medical SciencesKermanshahIran

Personalised recommendations