Low-level NO gas sensing properties of \(\hbox {Zn}_{1-x}\hbox {Sn}_{x}\hbox {O}\) nanostructure sensors under UV light irradiation at room temperature

  • Irmak Karaduman ErEmail author
  • Ali Orkun Çağirtekin
  • Tuğba Çorlu
  • Memet Ali Yildirim
  • Aytunç Ateş
  • Selim Acar


\(\hbox {Zn}_{1-x}\hbox {Sn}_{x}\hbox {O}\) (\(x=0\), 0.05, 0.10, 0.15, 0.20) nanostructures have been grown through the successive ionic layer adsorption and reaction method. The structural, morphological and compositional properties of the nanostructures have been characterized through X-ray diffraction, scanning electron microscope and energy dispersive X-ray analysis, respectively. The NO gas sensing properties of sensors to 20 ppb have been systematically investigated in the dark and under UV light irradiation. A \(\hbox {Zn}_{0.90}\hbox {Sn}_{0.10}\hbox {O}\) sensor has exhibited the highest response for 20 ppb NO gas compared with other sensors. The sensor response has increased from 1.9 to 43% depending on the UV light irradiation for the \(\hbox {Zn}_{0.90}\hbox {Sn}_{0.10}\hbox {O}\) sensor. \(\hbox {Zn}_{0.90}\hbox {Sn}_{0.10}\hbox {O}\) nanostructure can be used as a suitable gas sensor material for detection of low concentration levels of NO gas.


Gas sensor UV light irradiation Sn-doped ZnO nanostructures 



This work was supported by TUBITAK with Project No. 115M658 and Gazi University Scientific Research Fund Project No. 05/2016-21.


  1. 1.
    Geng Q, He Z, Chen X, Dai W and Wang X 2013 Sens. Actuators B 188 293CrossRefGoogle Scholar
  2. 2.
    Mirzaei A, Park S, Kheel H, Sun G-J, Lee S and Lee C 2016 Ceram. Int. 42 6187CrossRefGoogle Scholar
  3. 3.
    Panda S K and Jacob C 2009 Bull. Mater. Sci. 32 49CrossRefGoogle Scholar
  4. 4.
    Cho M and Park I 2016 J. Sens. Sci. Technol. 25 103CrossRefGoogle Scholar
  5. 5.
    Patıl P, Gaıkwad G, Patıl D R and Naık J 2016 Bull. Mater. Sci. 39 655CrossRefGoogle Scholar
  6. 6.
    Yıldırım M A, Tuna Yıldırım S and Ateş A 2017 J. Alloys Compd. 701 37CrossRefGoogle Scholar
  7. 7.
    Yıldırım M A, Akaltun Y and Ateş A 2012 Solid State Sci. 14 1282CrossRefGoogle Scholar
  8. 8.
    Çorlu T, Karaduman I, Yildirim M A, Ates A and Acar S 2017 J. Electron. Mater. 46 7CrossRefGoogle Scholar
  9. 9.
    Karaduman I, Er E, Celikkan H and Acar S 2015 Sens. Actuators B 221 1188CrossRefGoogle Scholar
  10. 10.
  11. 11.
    Yoo R, Cho S, Song M J and Lee W 2015 Sens. Actuators B 221 217CrossRefGoogle Scholar
  12. 12.
    Panda J, Sasmal I and Nath T K 2016 AIP Adv. 6 035118CrossRefGoogle Scholar
  13. 13.
    Zhang Z, Yi J B, Ding J, Wong L M, Seng H L, Wang S J et al 2008 J. Phys. Chem. C 112 9579CrossRefGoogle Scholar
  14. 14.
    Sharma A, Tomar M and Gupta V 2001 Sens. Actuators B 156 743CrossRefGoogle Scholar
  15. 15.
    Xie W, Liu B, Xiao S, Li H, Wang Y, Cai D et al 2015 Sens. Actuators B 215 125CrossRefGoogle Scholar
  16. 16.
    Espid E and Taghipour F 2017 Sens. Actuators B 241 828CrossRefGoogle Scholar
  17. 17.
    Luo L, Sosnowchik B D and Lin L 2010 Nanotechnology 21 495502CrossRefGoogle Scholar
  18. 18.
    Koo W-T, Choi S-J, Kim N-H, Jang J-S and Kim I-D 2016 Sens. Actuators B 223 301CrossRefGoogle Scholar
  19. 19.
    JeongY-J, Balamurugan C and Lee D-W 2016 Sens. Actuators B 229 288CrossRefGoogle Scholar
  20. 20.
    Karaduman I, Barin Ö, Yıldız D E and Acar S 2015 J. Appl. Phys. 118 174501CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  • Irmak Karaduman Er
    • 1
    Email author
  • Ali Orkun Çağirtekin
    • 1
  • Tuğba Çorlu
    • 1
  • Memet Ali Yildirim
    • 2
  • Aytunç Ateş
    • 3
  • Selim Acar
    • 1
  1. 1.Department of Physics, Science FacultyGazi UniversityAnkaraTurkey
  2. 2.Department of Electric and Electronics Engineering, Engineering FacultyErzincan UniversityErzincanTurkey
  3. 3.Department of Material Engineering, Engineering and Natural Sciences FacultyYıldırım Beyazıt UniversityAnkaraTurkey

Personalised recommendations