Thermodynamic analysis of electrodeposition of copper from copper sulphate

  • Rupayan Ghosh
  • V Sudha
  • S HarinipriyaEmail author


The free energy of activation of copper electrodeposition from copper sulphate solution is derived in terms of the dehydration energy of copper sulphate, hydration number of copper sulphate, solvated work function of the host metal and coordination number of the host metal on which the copper deposition is carried out. The free energy of activation for copper electrodeposition on 31 different host metals had been evaluated. The trend in the free energy of activation on different metals is studied and feasible electrodeposition of copper for appropriate applications had been suggested. The methodology is extended to obtain the exchange current densities for copper electrodeposition on different surfaces of Pt in acid medium and compared with the existing literature.


Copper sulphate copper electrodeposition thermodynamics free energy of activation work function 



We acknowledge SRM Institute of Science and Technology for providing necessary computational facilities to carry out this work. We also acknowledge the valuable comments of the reviewer.

Supplementary material

12034_2018_1712_MOESM1_ESM.docx (12 kb)
Supplementary material 1 (docx 12 KB)


  1. 1.
    Mararka S P and Gutmann R J 1993 Thin Solid Films 236 257CrossRefGoogle Scholar
  2. 2.
    Lane M W, Murray C E, McFeely F R, Vereecken P M and Rosenberg R 2003 Appl. Phys. Lett. 83 2330CrossRefGoogle Scholar
  3. 3.
    Zhang J M, Xu K W and Ji V 2002 Appl. Surf. Sci. 187 60CrossRefGoogle Scholar
  4. 4.
    Anderson J C 1972 Thin Solid Films 12 1CrossRefGoogle Scholar
  5. 5.
    Granneman E H A 1993 Thin Solid Films 228 1CrossRefGoogle Scholar
  6. 6.
    Yin K B, Xia Y D, Chan C Y and Zhang W Q 2008 Scr. Mater. 58 65CrossRefGoogle Scholar
  7. 7.
    Harper M E, Cabra C, Andricacos P C, Gignac L and Noyan I C 1999 J. Appl. Phys. 86 2516CrossRefGoogle Scholar
  8. 8.
    Wang H, Huang Y, Tan Z and Hu X 2004 Anal. Chim. Acta 526 13CrossRefGoogle Scholar
  9. 9.
    Podaha E J 2004 Nano Lett. 1 413CrossRefGoogle Scholar
  10. 10.
    Ibanez A and Fatas E 2005 Surf. Coat. Technol. 191 7CrossRefGoogle Scholar
  11. 11.
    Wijesundera R P, Hidaka M, Koga K, Sakai M and Siripala W 2006 Thin Solid Films 500 241CrossRefGoogle Scholar
  12. 12.
    Chatterjee A P, Mukhopadhyay A K, Chakraborty A K, Sasmal R N and Lahiri S K 1991 Mater. Lett. 11 358CrossRefGoogle Scholar
  13. 13.
    Mirkin M V and Nilov A P 1990 J. Electroanal. Chem. 283 35CrossRefGoogle Scholar
  14. 14.
    Ratsch C and Venables J A 2003 J. Vac. Sci. Technol. A 21 S96CrossRefGoogle Scholar
  15. 15.
    Schmelzer J W P 2001 J. Colloid Interface Sci. 242 354CrossRefGoogle Scholar
  16. 16.
    Grujicic D and Pesic B 2002 Electrochim. Acta 47 2901CrossRefGoogle Scholar
  17. 17.
    Venables J A, Spiller G D T and Hanbucken M 1984 Rep. Prog. Phys. 47 399CrossRefGoogle Scholar
  18. 18.
    Budevski E, Staikov G and Lorenz W 2000 Electrochim. Acta 45 2559CrossRefGoogle Scholar
  19. 19.
    Scarifker B and Hills G 1983 Electrochim. Acta 28 879CrossRefGoogle Scholar
  20. 20.
    Zainal Z, Kassim A, Hussein M Z and Ching C H 2004 Mater. Lett. 58 2199CrossRefGoogle Scholar
  21. 21.
    Fenineche N, Coddet C and Saida A 1990 Surf. Coat. Technol. 41 75CrossRefGoogle Scholar
  22. 22.
    Dulal S M S I, Yun H J, Shin C B and Kim C K 2007 Electrochim. Acta 53 934CrossRefGoogle Scholar
  23. 23.
    Ruiz A M, Pardave M P and Batina N 2008 Electrochim. Acta 53 2115CrossRefGoogle Scholar
  24. 24.
    Ramirez C, Arce E M, Romo M and Pardave M P 2004 Solid State Ionics 169 81CrossRefGoogle Scholar
  25. 25.
    Harinipriya S and Subramaniam V R 2008 J. Phys. Chem. B 112 4036CrossRefGoogle Scholar
  26. 26.
    Harinipriya S and Sangaranarayanan M V 2002 Langmuir 18 5572CrossRefGoogle Scholar
  27. 27.
    Marcus R A 1956 J. Chem. Phys. 24 966CrossRefGoogle Scholar
  28. 28.
    Newman J and Alyea T K 2004 Electrochemical systems, chap 8, 3rd edn (New York: Wiley) p 207Google Scholar
  29. 29.
    Bozzini B, Mele C and D’urzo L 2006 J. Appl. Electrochem. 36 87Google Scholar
  30. 30.
    Bozzini B, D’urzo L, Re M and De Richardis F 2008 J. Appl. Electrochem. 38 1561Google Scholar
  31. 31.
    Bozzini B and Sgura I 2006 J. Appl. Electrochem. 36 983CrossRefGoogle Scholar
  32. 32.
    Markovic N M, Gasteiger H A and Ross P N Jr 1995 Langmuir 11 4098CrossRefGoogle Scholar
  33. 33.
    Nishihara C, Raspini I A, Kondho H, Shindo H, Kaise M and Nozoye H 1992 J. Electroanal. Chem. 338 299CrossRefGoogle Scholar
  34. 34.
    Nikolic N D, Popov K I, Pavlovic L J and Pavlovic M G 2007 Sensors 7 1CrossRefGoogle Scholar
  35. 35.
    Cheol S H, Dong J and Liu M 2003 Adv. Mater. 15 1610CrossRefGoogle Scholar
  36. 36.
    Dima G E, de Vooys A C A and Koper M T M 2003 J. Electroanal. Chem. 15 554Google Scholar
  37. 37.
    Pletcher D and Poorbedi Z 1979 Electrochim. Acta 24 1253CrossRefGoogle Scholar
  38. 38.
    Grujicic D and Pesic B 2005 Electrochim. Acta 50 4426CrossRefGoogle Scholar
  39. 39.
    Li X, Drews T O, Rusli E, Xue F, He Y, Braatz R D et al 2007 J. Electrochem. Soc. 154 D230CrossRefGoogle Scholar
  40. 40.
    Rusli E, Xue F, Drews T O, Vereecken P, Andracacos P, Deligianni H et al 2007 J. Electrochem. Soc. 154 D584CrossRefGoogle Scholar
  41. 41.
    Derry D N and Zhong Z J 1989 Phys. Rev. B 39 1940CrossRefGoogle Scholar
  42. 42.
    Buso-Rogero C, Herrero E, Bandlow J, Comas Vives A and Jacob T 2013 Phys. Chem. Chem. Phys. 15 18671CrossRefGoogle Scholar
  43. 43.
    Markovic N M, Gasteiger H A and Ross P N Jr 1995 J. Phys. Chem. 99 3411CrossRefGoogle Scholar
  44. 44.
    Nishihara C and Nozoye H 1995 J. Electroanal. Chem. 386 75CrossRefGoogle Scholar
  45. 45.
    Schroder U, Linke R, Boo J-H and Wnadelt K 1996 Surf. Sci. 352–354 211CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of Chemical EngineeringSRM Institute of Science and TechnologyChennaiIndia
  2. 2.Department of ChemistrySRM Institute of Science and TechnologyChennaiIndia
  3. 3.Electrochemical Systems Lab, SRM Research InstituteSRM Institute of Science and TechnologyChennaiIndia

Personalised recommendations