Synthesis and characterization of porous cytocompatible scaffolds from polyvinyl alcohol–chitosan

  • Mahdi Zolghadri
  • Saeed Saber-SamandariEmail author
  • Sara Ahmadi
  • Kadhim Alamara


In this study, novel porous cytocompatible scaffolds with a 3D nanocomposite structure were synthesized by using nanoclay particles embedded into a biopolymer blend composed of polyvinyl alcohol (PVA) and chitosan (CS). According to the results, the Fourier transform infrared spectrum confirmed the presence of nanoclay, PVA and CS in the scaffold structure. X-ray diffraction outcomes showed the enhancement of crystalline zone in the synthesized 3D scaffolds by increasing the nanoclay content. Scanning electron microscopy (SEM) images revealed the highly porous interconnected microstructure of the scaffolds. Also, the energy-dispersive X-ray spectra verified the presence of nanoclay, PVA and CS in the sample with the highest nanoclay content. According to mechanical properties and porosity of the synthesized 3D scaffolds, compressive strength (i.e., \(3.5\pm 0.2\) MPa), elastic modulus (\(1.42\pm 0.02\) GPa) and porosity (75–82%) of the sample with the highest nanoclay content was in the range of mechanical properties and porosity of a natural trabecular bone tissue. The swelling of samples in a phosphate-buffered saline solution was less than the swelling in water. In addition, increasing the content of nanoclay decreases the percentage of swelling. Outcomes of cell culture experiments confirmed that the synthesized 3D scaffolds were not toxic and the cell attachment SEM images showed a sufficient attachment of the cell to the interconnected porous structure of the sample. Results suggest that the synthesized 3D scaffold in this study possesses proper microstructure properties and no cytotoxicity to be replaced with natural bone tissues.


Bone tissue engineering nanoclay particles polyvinyl alcohol chitosan 


  1. 1.
    Braddock M, Houston P, Campbell C and Ashcroft P 2001 Am. Physiol. Soc. 16 28Google Scholar
  2. 2.
    Tsai S T, Hsu F Y and Chen P L 2008 Acta Biomater. 4 1332CrossRefGoogle Scholar
  3. 3.
    Uemura T, Dong J, Wang Y, Kojima H, Saito T, Iejima D et al 2003 Biomaterials 24 2277CrossRefGoogle Scholar
  4. 4.
    Meyer U, Joos U and Wiesmann H P 2004 Int. J. Oral Maxillofac. Surg. 33 635CrossRefGoogle Scholar
  5. 5.
    Freyman T, Yannas I and Gibson L 2001 Prog. Mater. Sci. 46 273CrossRefGoogle Scholar
  6. 6.
    Zhou X H, Wei D X, Ye H M, Zhang X, Meng X and Zhou Q 2016 Mater. Sci. Eng. C 67 326CrossRefGoogle Scholar
  7. 7.
    Fereshteh Z, Fathi M, Bagri A and Boccaccini A R 2016 Mater. Sci. Eng. C 68 613CrossRefGoogle Scholar
  8. 8.
    Zhao W, Li J, Jin K, Liu W, Qiu X and Li C 2016 Mater. Sci. Eng. C 59 1181CrossRefGoogle Scholar
  9. 9.
    Saravanan S, Sameera D K, Moorthi A and Selvamurugan N 2013 Int. J. Biol. Macromol. 62 431CrossRefGoogle Scholar
  10. 10.
    de Araújo Júnior A M, Braido G, Saska S, Barud H S, Franchi L P, Assunção M N et al 2016 Carbohydr. Polym. 136 892CrossRefGoogle Scholar
  11. 11.
    Kruppke B, Farack J, Wagner A S, Beckmann S, Heinemann C, Glenske K et al 2016 Acta Biomater. 32 275CrossRefGoogle Scholar
  12. 12.
    Pon-On W, Suntornsaratoon P, Charoenphandhu N, Thongbunchoo J, Krishnamra N and Tang I M 2016 Mater. Sci. Eng. C 62 183CrossRefGoogle Scholar
  13. 13.
    Beladi F, Saber-Samandari S and Saber-Samandari S 2017 Mater. Sci. Eng. C 75 385CrossRefGoogle Scholar
  14. 14.
    Langer R and Vacanti J P 1993 Sciene 260 92CrossRefGoogle Scholar
  15. 15.
    Ma P X, Zhang R, Xiao G and Franceschi R 2001 J. Biomed. Mater. Res. 54 284CrossRefGoogle Scholar
  16. 16.
    Peter M, Binulal N S, Nair S V, Selvamurugan N, Tamura H and Jayakumar R 2010 Chem. Eng. J. 158 353CrossRefGoogle Scholar
  17. 17.
    Cerchiara T, Luppi B and Bigucci F 2003 Eur. J. Pharm. Biopharm. 56 401CrossRefGoogle Scholar
  18. 18.
    Hassan C M and Ward J H 2000 Polymer 41 6729CrossRefGoogle Scholar
  19. 19.
    Hassan C M and Peppas N A 2000 Macromolecules 33 2472CrossRefGoogle Scholar
  20. 20.
    Sin L T, Rahman W A, Rahmat A R and Mokhtar M 2011 Carbohydr. Polym. 83 303CrossRefGoogle Scholar
  21. 21.
    Kim S J, Lee C K and Lee Y M 2003 React. Funct. Polym. 55 291CrossRefGoogle Scholar
  22. 22.
    Părpăriţăa E, Cheaburua C N, Pat̨achiab S F and Vasilea C 2014 Acta Chem. Iasi 22 75CrossRefGoogle Scholar
  23. 23.
    Jayakumar R, Prabaharan M, Nair S V and Tamura H 2010 Biotechnol. Adv. 28 142CrossRefGoogle Scholar
  24. 24.
    Mirzaei E, Faridi-Majidi R, Shokrgozar M A and Asghari Paskiabi F 2014 Nanomed. J. 1 137Google Scholar
  25. 25.
    Mahdavi H, Mirzadeh H, Zohuriaan-Mehr M J and Talebnezhad F 2013 J. Am. Sci. 9 203Google Scholar
  26. 26.
    Abd-Khorsand S, Saber-Samandarib S and Saber-Samandaric S 2017 Int. J. Biol. Macromol. 101 51CrossRefGoogle Scholar
  27. 27.
    Karamian E, Kalantar Motamedi M R, Khandan A, Soltani P and Maghsoudi S 2014 Prog. Nat. Sci. 24 150CrossRefGoogle Scholar
  28. 28.
    Kim H W, Knowles J C and Kim H E 2004 J. Biomed. Mater. Res. B 70 240CrossRefGoogle Scholar
  29. 29.
    Saber-Samandari S and Gross K A 2009 Acta Biomater. 5 2206CrossRefGoogle Scholar
  30. 30.
    Saber-Samandari S, Saber-Samandari S, Ghonjizade-Samani F, Aghazadeh J and Sadeghi A 2016 Ceram. Int. 42 11055CrossRefGoogle Scholar
  31. 31.
    Saber-Samandari S, Saber-Samandari S, Kiyazar S, Aghazadeh J and Sadeghi A 2016 Int. J. Biol. Macromol. 86 434CrossRefGoogle Scholar
  32. 32.
    Guan Y L and Yao K D 1996 J. Appl. Polym. Sci. 61 2325CrossRefGoogle Scholar
  33. 33.
    Ray S S, Okamoto K and Okamoto M 2003 Macromolecules 36 2355CrossRefGoogle Scholar
  34. 34.
    Azizi H, Morshedian J, Barikani M and Wagner M 2010 Express Polym. Lett. 4 252CrossRefGoogle Scholar
  35. 35.
    Koosha M, Mirzadeh H, Shokrgozar M A and Farokhi M 2015 RSC Adv. 5 10479CrossRefGoogle Scholar
  36. 36.
    Yang J M, Su W Y, Leu T L and Yang M C 2004 J. Membr. Sci. 236 39CrossRefGoogle Scholar
  37. 37.
    Zheng H, Du Y, Yu J, Huang R and Zhang L 2001 J. Appl. Polym. Sci. 80 2558CrossRefGoogle Scholar
  38. 38.
    Kabiri Bamoradian K, Mirzadeh H and Zohuriaan-Mehr M J 2007 Iran Polym. J. 16 147Google Scholar
  39. 39.
    Sabree I, Gough J E and Derby B 2015 Ceram. Int. 41 8425CrossRefGoogle Scholar
  40. 40.
    Chen P Y and McKittrick J 2011 J. Mech. Behav. Biomed. Mater. 4 961CrossRefGoogle Scholar
  41. 41.
    Saber-Samandari S, Gulcan H O, Saber-Samandari S and Gazi M 2014 Water Air Soil Pollut. 225 2177CrossRefGoogle Scholar
  42. 42.
    Lee S, Porter M, Wasko S, Lau G, Chen P Y, Novitskaya E E et al 2012 Mater. Res. Soc. Symp. Proc. 1418 177CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  • Mahdi Zolghadri
    • 1
  • Saeed Saber-Samandari
    • 1
    Email author
  • Sara Ahmadi
    • 1
  • Kadhim Alamara
    • 2
  1. 1.New Technologies Research CenterAmirkabir University of TechnologyTehranIran
  2. 2.Sustainable and Renewable Energy Engineering (SREE)University of SharjahSharjahUAE

Personalised recommendations