Advertisement

First-principles calculations of opto-electronic properties of IIIAs (III = Al, Ga, In) under influence of spin–orbit interaction effects

  • Malak Azmat ALIEmail author
  • Nadeem Khan
  • Farooq Ahmad
  • Asghar Ali
  • Muhammad Ayaz
Article

Abstract

In this article, we present first-principles calculations for structural and opto-electric properties of IIIAs (III = Al, Ga, In) in the zinc-blende phase. Our calculations are based on the full potential-linearized augmented plane wave method implemented in the WIEN2k code. We employed Perdew–Burke–Ernzerhof generalized gradient and modified Becke–Johnson approximations as exchange–correlation potentials. Our calculated structure parameters are found to be in reasonable agreement with the available literature. It was found that the inclusion of spin–orbit interaction effect shifts the conduction band minima towards the Fermi level and provides band gaps very close to their experimental values. The optical properties such as complex dielectric functions, complex refractive indices, reflectivities, energy loss functions, optical conductivities and absorption coefficients at varied frequencies were investigated in detail. We found that static real part of dielectric functions and refractive index decreases with increase in band gap. Our calculated critical point energies (eV) are consistent with the experimental results.

Keywords

FP-LAPW structural properties electronic properties spin–orbit interaction optical properties 

References

  1. 1.
    Ribeiro M, Fonseca L R C and Ferreira L G 2011 EPL 94 27001CrossRefGoogle Scholar
  2. 2.
    Annane F, Meradji H, Ghemid S and Hassan F E H 2010 Comput. Mater. Sci. 50 274Google Scholar
  3. 3.
    Vurgaftman I, Meyer J R and Mohan L R R 2001 Appl. Phys. Rev. 89 5815CrossRefGoogle Scholar
  4. 4.
    Rehamn G, Shafiq M, Saifullah M, Ahmad M, Asadadabadi S J, Maqbool M et al 2016 J. Electron. Mater. 45 3314CrossRefGoogle Scholar
  5. 5.
    Ziane M I, Bensaad Z, Labdelli B and Bennacer H 2014 Sens. Transducers J. 27 374Google Scholar
  6. 6.
    Ferreira L, Wei S H and Zunger A 1998 Phys. Rev. B 40 3197CrossRefGoogle Scholar
  7. 7.
    Haq B U, Ahmad R, Hassan F E H, Khenata R, Kasim M K and Goumri-Said S 2014 Sol. Energy 100 1CrossRefGoogle Scholar
  8. 8.
    Fern R E and Onton R E 1971 J. Appl. Phys. 42 3499CrossRefGoogle Scholar
  9. 9.
    Adachi S 1987 Phys. Rev. B 35 7454CrossRefGoogle Scholar
  10. 10.
    Joyce J H, Docherty C J, Gao Q, Tan H H, Jagadish C, Hughes J L et al 2013 Nanotechnology 24 214006CrossRefGoogle Scholar
  11. 11.
    Garriga M, Lautenschlager P, Cardona M and Ploog K 1987 Solid State Commun. 63 157CrossRefGoogle Scholar
  12. 12.
    Yu P Y and Cardona M 2010 Fundamentals of semiconductors physics, 4th edition (Netherland: Springer)CrossRefGoogle Scholar
  13. 13.
    Djurisic A B, Rakic A D, Kwok P C K, Li E H and Majewski M L 1999 J. Appl. Phys. 85 3638Google Scholar
  14. 14.
    Ahmed R, Hashemifar S J, Akbarzadeh H, Ahmad M and Aleem F 2007 Comput. Mater. Sci. 39 580CrossRefGoogle Scholar
  15. 15.
    Koller D, Tran F and Blaha P 2005 Phys. Rev. B 72 193201CrossRefGoogle Scholar
  16. 16.
    Wang Y, Yin H, Cao R, Zahid F, Zhu Y, Liu L et al 2013 Phys. Rev. B 87 235203CrossRefGoogle Scholar
  17. 17.
    Hinuma Y, Gruneis A, Kresse G and Oba F 2014 Phys. Rev. B 90 155405CrossRefGoogle Scholar
  18. 18.
    Tomic S, Montanri B and Harrison N M 2008 J. Physica E 40 2125CrossRefGoogle Scholar
  19. 19.
    Remediakis I N and Kaxiras E 1999 Phys. Rev. B 59 5536CrossRefGoogle Scholar
  20. 20.
    Shimazaki T and Asai Y 2010 J. Chem. Phys. 130 16401Google Scholar
  21. 21.
    Lebegue S, Arnaud B, Alouani M and Bloech P E 2003 Phys. Rev. B 67 155208CrossRefGoogle Scholar
  22. 22.
    Kim Y S, Marshman M, Kresse G, Tran F and Blaha P 2010 Phys. Rev. B 82 205212CrossRefGoogle Scholar
  23. 23.
    Godby R W, Schlutter M and Sham L J 1987 Phys. Rev. B 35 4170CrossRefGoogle Scholar
  24. 24.
    Blaha P, Schwarz K, Madsen G K H, Kvasnicka D and Luitz J 2001 WIEN2K, An augmented plane wave plus local orbitals program for calculating crystal properties (Vienna, Austria: Vienna University of Technology)Google Scholar
  25. 25.
    Wong K M, Alay-e-Abbas S M, Fang Y, Shaukat A and Lei Y 2013 J. Appl. Phys. 114 034901CrossRefGoogle Scholar
  26. 26.
    Tran F and Blaha P 2009 Phys. Rev. Lett. 102 226401CrossRefGoogle Scholar
  27. 27.
    Hilal M, Rashid B, Khan S H and Khan A 2016 Mater. Chem. Phys. 184 41CrossRefGoogle Scholar
  28. 28.
    Ali M A, Khan A, Khan S H, Ouohrani T, Murtaza G, Khenata R et al 2015 Mater. Sci. Semicond. Process. 38 57CrossRefGoogle Scholar
  29. 29.
    Faizan M, Murtaza G, Khan S H, Khan A, Mehmood A, Khenata R et al 2016 Bull. Mater. Sci. 39 1419CrossRefGoogle Scholar
  30. 30.
    Wyckoff R W G 1986 Crystal structures, 2nd edition (USA: Krieger)Google Scholar
  31. 31.
    Wang S Q and Ye H Q 2002 J. Phys.: Condens. Matter 14 9579Google Scholar
  32. 32.
    Hellwege K H, Medelung O and Bornstein L 1982 (New Series Group III) Numerical data and functional relationship in science and technology (New York: Springer)Google Scholar
  33. 33.
    Kalvoda S, Paulus B, Flude P and Stoll H 1997 Phys. Rev. B 55 4027CrossRefGoogle Scholar
  34. 34.
    Vancamp P E, Vandoren V E and Deverse J T 1991 Phys. Rev. B 44 9056CrossRefGoogle Scholar
  35. 35.
    Min I B, Massida S and Freeman A J 1988 Phys. Rev. B 38 1970CrossRefGoogle Scholar
  36. 36.
    Agarwal B K, Yadav P S, Kumar S and Agarwal S 1995 Phys. Rev. B 52 4896CrossRefGoogle Scholar
  37. 37.
    Staroverov V N and Scuseria G E 2004 Phys. Rev. B 69 075102CrossRefGoogle Scholar
  38. 38.
    Fillipi B, Singh D J and Umrigar C J 1994 Phys. Rev. B 50 14947CrossRefGoogle Scholar
  39. 39.
    Paulus B, Fulde P and Stoll H 1996 Phys. Rev. B 54 2556CrossRefGoogle Scholar
  40. 40.
    Rushton P P, Clark S J and Tozer D J 2001 Phys. Rev. B 63 115206CrossRefGoogle Scholar
  41. 41.
    Vubcevich M 1972 J. Phys. Status Solidi B 54 219CrossRefGoogle Scholar
  42. 42.
    Huai S and Zunger A 1999 Phys. Rev. B 60 5404CrossRefGoogle Scholar
  43. 43.
    Causa M, Dovesi R and Roetti C 1991 Phys. Rev. B 43 11937CrossRefGoogle Scholar
  44. 44.
    Senger R T, Tongay S, Durgun E and Ciraci B 2005 Phys. Rev. B 72 075419CrossRefGoogle Scholar
  45. 45.
    Rohlfing M, Kruger P and Pollmann J 1993 Phys. Rev. B 48 17791CrossRefGoogle Scholar
  46. 46.
    Alouani M and Christensen N E 1988 Phys. Rev. B 37 1167CrossRefGoogle Scholar
  47. 47.
    Arnaud B and Alouani M 2001 Phys. Rev. B 63 085208CrossRefGoogle Scholar
  48. 48.
    Ahmad I, Amin B, Maqbool M, Muhammad S, Murtaza G, Ali S et al 2012 Chin. Phys. Lett. 29 097102CrossRefGoogle Scholar
  49. 49.
    Khan I, Ahmad I, Amin B, Murtaza G and Ali Z 2011 Physica B 406 2509CrossRefGoogle Scholar
  50. 50.
    Murtaza G, Ahmad I, Amin B, Afaq A, Maqbool M, Maqssod J et al 2011 Opt. Mater. 33 553CrossRefGoogle Scholar
  51. 51.
    Xu B, Li X, Sun J and Yi L 2006 Eur. Phys. J. B 66 483CrossRefGoogle Scholar
  52. 52.
    Babu K E, Murali N, Swamy D T and Veeraiah V 2014 Bull. Mater. Sci. 37 287CrossRefGoogle Scholar
  53. 53.
    Rabina O, Lin Y M and Dresselhaus M S 2001 Appl. Phys. Lett. 79 81CrossRefGoogle Scholar
  54. 54.
    Rashid B, Hilal M, Khan S H and Khan A 2016 Mater. Sci. Semicond. Process. 41 83CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of PhysicsGovernment Post Graduate Jahanzeb College Saidu Sharif SwatKPKPakistan

Personalised recommendations