Silica-coating of nano-\(\hbox {Y}_{3} \hbox {Al}_{5} \hbox {O}_{12}{:}\hbox {Ce}^{3+}\) synthesized by self-combustion

  • Robin Malo
  • Glorieux BenoîtEmail author
  • Mornet Stéphane
  • Mutelet Brice
  • Vignau Laurence
  • Garcia Alain


\(\hbox {Y}_{2.91} \hbox {Ce}_{0.09} \hbox {Al}_{5} \hbox {O}_{12}\) is obtained by self-combustion, grinding and sol–gel coating. X-ray diffraction, transmission electron microscopy, photoluminescence and absorption measurements were used to identify the structural and optical properties of each step of the process. The process is composed of a combination of chemical and physico-chemical processes including combustion and thermal steps, followed by grinding, powder dispersion by acidic passivation, stabilization of particle dispersions with citrate ligands and embedding of yttrium aluminium garnet (YAG) particles into \(\hbox {SiO}_{2}\) shells using a seeded growth process before drying. The initial state of the obtained powder is composed of 35 nm crystallites, sintered and agglomerated. The grinding step breaks the sintered bridge, while the passivation and citrate adsorption steps separate the particles by electrostatic repulsion before the silica coating. The optical characterizations are performed and compared separately for the powdered samples that represent the initial and final states of our process, and the dispersion sample represents the intermediate state of our process. The optical measurement revealed an important amount of optical defects at the surface of the particles, compared with micrometric commercial particles. The grinding, nitric acid and citrate steps remove some of these defects. The final state of the sample still possesses lower quantum efficiency than that of a micrometric sample, but the \(\hbox {SiO}_{2}\) coating allows for a perfect separation of the particle, suitable for implementation in small devices.


Self-combustion YAG core–shell \(\hbox {SiO}_{2}\) coating 


  1. 1.
    Emsley J (ed) 2000 The shocking history of phosphorus (UK: Macmillan)Google Scholar
  2. 2.
    Bhattacharyya S and Ghatak S 2007 Trans. Indian Ceram. Soc. 66 77CrossRefGoogle Scholar
  3. 3.
    Ye S, Xiao F, Pan Y X, Ma Y Y and Zhang Q Y 2010 Mater. Sci. Eng. R 71 1CrossRefGoogle Scholar
  4. 4.
    Wu J L, Gundiah G and Cheetam A K 2007 Chem. Phys. Lett. 441 250CrossRefGoogle Scholar
  5. 5.
    Kim J W, Shen D Y, Sahu J K and Clarkson A W 2009 IEEE J. Sel. Top. Quantum Electron. 15 361CrossRefGoogle Scholar
  6. 6.
    Saiki T, Imasaki K, Motokoshi S, Yamanaka C, Fujita H, Nakatsuka M et al 2006 Opt. Commun. 268 155CrossRefGoogle Scholar
  7. 7.
    Geusic J E, Marcos H M and Van Uitert L G 1964 Appl. Phys. Lett. 4 182CrossRefGoogle Scholar
  8. 8.
    Mueller-Mach R, Mueller G O and Krames M 2004 Proc. Third SPIE Int. Conf. Solid State Light. 5187 115Google Scholar
  9. 9.
    Blasse G and Bril A 1967 Appl. Phys. Lett. 11 53CrossRefGoogle Scholar
  10. 10.
    Dorenbos P 2013 J. Lumin. 134 310CrossRefGoogle Scholar
  11. 11.
    Kanke Y and Navrotsky A 1998 J. Solid. State Chem. 141 424CrossRefGoogle Scholar
  12. 12.
    Kupp E R, Kochawattana S, Lee S H, Misture S and Messing G L 2014 J. Mater. Res. 29 2303CrossRefGoogle Scholar
  13. 13.
    Marlot C, Barraud E, Le Gallet S, Eichhorn M and Bernard F 2012 J. Solid. State Chem. 191 114CrossRefGoogle Scholar
  14. 14.
    He G, Liu G, Yang Z, Guo S and Li J 2014 Ceram. Int. B 40 15265CrossRefGoogle Scholar
  15. 15.
    Boukerika A, Guerbous L and Brihi N 2014 J. Alloy. Compd. 614 383CrossRefGoogle Scholar
  16. 16.
    Yang H, Yuan L, Zhu G, Yu A and Xu H 2009 Mater. Lett. 63 2271CrossRefGoogle Scholar
  17. 17.
    Yuexiao P, Mingmei W and Qiang S 2004 Mater. Sci. Eng. B 106 251CrossRefGoogle Scholar
  18. 18.
    Yan B and Su X Q 2004 Mater. Sci. Eng. B 116 196CrossRefGoogle Scholar
  19. 19.
    Chung W, Yu H J, Park S H, Chun B-H and Kim S H 2011 Mater. Chem. Phys. 126 162CrossRefGoogle Scholar
  20. 20.
    Wang D, Caruso Rachel A and Caruso F 2001 Chem. Mater. 13 364CrossRefGoogle Scholar
  21. 21.
    Mornet S, Elissalde C and Hornebecq V 2005 Chem. Mater. 17 4530CrossRefGoogle Scholar
  22. 22.
    Iler Ralph K (ed) 1979 The chemistry of silica (USA: Wiley) 98Google Scholar
  23. 23.
    Mornet S, Elissalde C and Bidault O 2007 Chem. Mater. 19 987CrossRefGoogle Scholar
  24. 24.
    Kaman O, Pollert E, Veverka P, Hadova E, Knivek K, Marysko M et al 2009 Nanotechnology 20 275610CrossRefGoogle Scholar
  25. 25.
    Roisnel T and Rodriguez-Carvajal J 2000 Mater. Sci. Forum, Proc. 7th European Powder Diffr. Conf. (EPDIC 7) 278-3 118Google Scholar
  26. 26.
    Patterson A L 1939 Phys. Rev. 56 978CrossRefGoogle Scholar
  27. 27.
    Robbins D J 1979 J. Electrochem. Soc. 126 1550CrossRefGoogle Scholar
  28. 28.
    Keating S, Urquhart M G, McLaughlin D V P and Pearce J M 2011 Cryst. Growth Des. 11 565CrossRefGoogle Scholar
  29. 29.
    Li J, Zhao J, Zhou H, Liang J, Liu X and Xu B 2011 Spectrochim. Acta A 78 1310CrossRefGoogle Scholar
  30. 30.
    Chua L L, Zaumseil J, Chang J F, Ou E C W, Ho P K H, Sirringhaus H et al 2005 Nature 434 194CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.ICMCB, UMR 5026CNRSPessacFrance
  2. 2.ICMCB, UMR 5026Université de BordeauxPessacFrance
  3. 3.Bordeaux INP/ENSCBP, Laboratoire de l’Intégration du Matériau au Système, CNRS UMR5218Université de BordeauxPessacFrance

Personalised recommendations