Advertisement

Hybrid gate dielectrics: a comparative study between polyvinyl alcohol/\(\hbox {SiO}_{2}\) nanocomposite and pure polyvinyl alcohol thin-film transistors

  • Nasima AfsharimaniEmail author
  • Bernard Nysten
Article
  • 13 Downloads

Abstract

Polyvinyl alcohol (PVA) thin films as polymer gate dielectrics, with and without \(\hbox {SiO}_{2}\) nanoparticles were fabricated using spin-coating. Surface roughness and hydrophilicity of PVA and PVA/\(\hbox {SiO}_{2}\) thin films were studied by contact-angle measurements and atomic force microscopy. The dielectric properties were characterized via capacitance and leakage-current measurements on metal–insulator–metal structures. In order to further investigate the application potential of such materials as a replacement for conventional inorganic dielectrics such as \(\hbox {SiO}_{2}\) in organic thin-film transistors, devices were fabricated based on these polymers using \(\upalpha \), \(\upomega \)-dihexylquaterthiophene as an active layer. Performance of the devices was realized by electrical measurements and Kelvin probe force microscopy. All transistors showed hole and electron mobilities in the low-voltage range. PVA/\(\hbox {SiO}_{2}\) films showed larger capacitance, less hydrophilicity, rougher surfaces and considerable leakage currents compared with those with neat PVA. Although integrating nanoparticles modified surface electronic properties and showed a shift in surface potential as observed in Kelvin probe force measurements, it appears that non-polymeric and neat polymeric dielectric materials could still be a privilege to nanocomposite polymeric dielectrics for optoelectronic applications.

Keywords

Polymer dielectrics surface chemistry electrical and structural properties scanning probe microscopy (SPM) ambipolar thin-film transistor 

Notes

Acknowledgements

The authors gratefully acknowledge Prof Yves Geerts (ULB, Belgium) for providing them with DH4T. They acknowledge financial support provided by the Fondation Louvain (Partenariat Solvay), the Belgian Federal Science Policy (IAP P6/27) and the F.R.S.-FNRS.

References

  1. 1.
    Lee W H, Choi H H, Kim D H and Cho K 2014 Adv. Mater. 26 1660CrossRefGoogle Scholar
  2. 2.
    Lin Y H, Faber H, Zhao K, Wang Q, Amassian A, McLachlan M et al 2013 Adv. Mater. 25 4340CrossRefGoogle Scholar
  3. 3.
    An T K, Park S J, Ahn E S, Jang S H, Kim Y, Kim K et al 2015 Dyes Pigm. 114 60CrossRefGoogle Scholar
  4. 4.
    Dodabalapur A 2006 Mater. Today 9 24CrossRefGoogle Scholar
  5. 5.
    Torsi L, Tafuri A, Cioffi N, Gallazzi M C, Sassella A, Sabbatini L et al 2003 Sens. Actuators B 93 257CrossRefGoogle Scholar
  6. 6.
    Kim G, Kang S J, Dutta G K, Han Y K, Shin T J, Noh Y Y et al 2014 J. Am. Chem. Soc. 136 9477CrossRefGoogle Scholar
  7. 7.
    Kim M J, An T K, Kim S O, Cha H, Xiofeng T, Park C E et al 2015 Mater. Chem. Phys. 153 63Google Scholar
  8. 8.
    Tan X, Park J M, Ma J Y and Kim Y H 2015 J. Nanosci. Nanotechnol. 15 1396CrossRefGoogle Scholar
  9. 9.
    Park K H, Yun H J, Lu W, Chung D S, Kwon S K and Kim Y H 2014 Dyes Pigm. 103 214CrossRefGoogle Scholar
  10. 10.
    Chua L L, Zaumseil J, Chang J F, Ou E C W, Ho P K H, Sirringhaus H et al 2005 Nature 434 194CrossRefGoogle Scholar
  11. 11.
    Yoo H, Ghittorelli M, Smits E C P, Gelinck G H, Lee H K, Torricelli F et al 2016 Sci. Rep. 6 35585CrossRefGoogle Scholar
  12. 12.
    Yang S Y, Shin K and Park C E 2005 Adv. Funct. Mater. 15 1806CrossRefGoogle Scholar
  13. 13.
    Nunes J G, Zane S G and Meth J S 2005 J. Appl. Phys. 98 104503CrossRefGoogle Scholar
  14. 14.
    Klauk H, Halik M, Zschieschang U, Schmid G, Radlik W and Weber W 2002 J. Appl. Phys. 92 5259CrossRefGoogle Scholar
  15. 15.
    Schroeder R, Majewski L A and Grell M 2005 Adv. Mater. 17 1535CrossRefGoogle Scholar
  16. 16.
    Chang J W, Hsu W L, Wu C Y, Guo T F and Wen T C 2010 Org. Electron. 11 1613CrossRefGoogle Scholar
  17. 17.
    Yang C Y, Cheng S S, Ou C W, Chuang Y C, Wu M C and Dhananjay C W C 2008 J. Appl. Phys. 103 094519CrossRefGoogle Scholar
  18. 18.
    Kwon J H, Zhang X, Piao S, Choi H, Bae J H and Park J 2016 Polymers 8 88CrossRefGoogle Scholar
  19. 19.
    Chen F C, Chu C W, He J, Yang Y and Lin J L 2004 Appl. Phys. Lett. 85 3295CrossRefGoogle Scholar
  20. 20.
    Maliakal A, Katz H, Cotts P M, Subramoney S and Mirau P 2005 J. Am. Chem. Soc. 127 14655CrossRefGoogle Scholar
  21. 21.
    Jung C, Maliakal A, Sidorenko A and Siegrist T 2007 Appl. Phys. Lett. 90 062111CrossRefGoogle Scholar
  22. 22.
    Choi J W, Yoon H G and Kim J K 2010 Org. Electron. 11 1145CrossRefGoogle Scholar
  23. 23.
    Singh T B, Meghdadi F, Günes S, Marjanovic N, Horowitz G, Lang P et al 2005 Adv. Mater. 17 2315CrossRefGoogle Scholar
  24. 24.
    Park S J and Lee D G 2006 Curr. Appl. Phys. 6 e182CrossRefGoogle Scholar
  25. 25.
    Leroy J, Boucher N, Sergeyev S, Sferrazza M and Geerts Y H 2007 Eur. J. Org. Chem. 8 1256CrossRefGoogle Scholar
  26. 26.
    Afsharimani N and Nysten B 2013 Thin Solid Films 536 295CrossRefGoogle Scholar
  27. 27.
    Duca M D, Plosceanu C L and Pop T 1998 Polym. Degrad. Stab. 61 65CrossRefGoogle Scholar
  28. 28.
    Jeong S, Kim D, Lee S, Park B K and Moon J 2006 Appl. Phys. Lett. 89 092101CrossRefGoogle Scholar
  29. 29.
    Ogura A, Saitoh H, Kosemura D, Kakemura Y T Y, Takei M, Koganezawa T et al 2009 Solid State Lett. 12 H117Google Scholar
  30. 30.
    Wang J, Lee W H, Ho J and Hu T 2009 J. Mater. Sci.: Mater. Electron. 20 355Google Scholar
  31. 31.
    Joshi D P, Pant G, Arora N and Nainwal S 2017 Heliyon 3 e00253CrossRefGoogle Scholar
  32. 32.
    Wrachien N, Lago N, Rizzo A, D’Alpaos R, Stefani A, Turatti G et al 2015 Microelectron. Reliab. 55 1790Google Scholar
  33. 33.
    Serban D A, Kilchytska V, Vlad A, Martin-Hoyas A, Nysten B, Jonas A M et al 2008 Appl. Phys. Lett. 92 143503Google Scholar
  34. 34.
    Singh T, Senkarabacak P, Saricifitci N S, Tanda A, Lackner C, Hagelauer R et al 2006 Appl. Phys. Lett. 89 033512Google Scholar
  35. 35.
    Kepler R 1960 Phys. Rev. 119 1226CrossRefGoogle Scholar
  36. 36.
    Singh T B, Günes S, Marjanovic N and Sariciftci N S 2005 J. Appl. Phys. 97 114508CrossRefGoogle Scholar
  37. 37.
    Mojumdar S C and Raki L 2005 J. Therm. Anal. Calorim. 82 89CrossRefGoogle Scholar
  38. 38.
    Chrissafis K, Paraskevopoulos K M, Papageorgiou G Z and Bikiaris D N 2008 J. Appl. Polym. Sci. 110 1739CrossRefGoogle Scholar
  39. 39.
    Alexandrova S and Szekeres A 2001 Phys. Status Solidi A 187 499CrossRefGoogle Scholar
  40. 40.
    Olthuis W and Bergveld P 1992 IEEE Trans. Dielectr. Electr. Insul. 27 691CrossRefGoogle Scholar
  41. 41.
    Duong D L, Leeb S M and Lee Y H 2012 J. Mater. Chem. 22 1994CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Institute of Condensed Matter and Nanosciences (Bio and Soft Matter)Université catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations