Advertisement

Role of nano-carbon additives in lead-acid batteries: a review

  • V MahajanEmail author
  • R S Bharj
  • J Bharj
Article
  • 19 Downloads

Abstract

Development in lead (Pb)-acid batteries (LABs) is an important area of research. The improvement in this electrochemical device is imperative as it can open several new fronts of technological advancement in different sectors like automobile, telecommunications, renewable energy, etc. Since the rapid failure of a LAB due to Pb sulphation under partial-state-of-charging, electrode grid corrosion and water loss are some major obstructions in its advancement. The doping of various carbon forms into the negative active material of an electrode has been suggested to be effective at improving the storage capacity and cyclic life of LABs by suppressing irreversible sulphation. This report is an attempt to focus on different theories related to the working mechanism of carbon and to summarize the investigation results observed by various researchers regarding the significant role of nano-carbon additives in LABs. On the basis of that, we tried to compare their performance along with the discussion on the best possible additive.

Keywords

Lead-acid battery sulphation \(\hbox {PbSO}_{4 }\) crystals negative active material HRPSoC testing nano-carbon additives 

Notes

Acknowledgements

The authors thank the Director, National Institute of Technology, Jalandhar (NITJ) for Technical Education Quality Improvement Programme (TEQIP-II) support. The authors would also like to thank Mr. Sudipto Ranjan Dass (DGM-R&D, Luminous Power Technologies, Una (HP), India) for his expertise that significantly assisted this work.

References

  1. 1.
    The advanced lead acid battery consortium 2016–2018. Available at: www.alabc.org/publications/overview-of-the-alabc-1618-program (accessed on 22 December 2016)
  2. 2.
    Economic-outlook, the global automotive market, Sept 14 2014. Available at: http://www.eulerhermes.com/mediacenter/Lists/mediacenter-documents/Economic-Outlook-The-global-Automotive-market-Sept14.pdf (accessed on 02 December 2016)
  3. 3.
    Budde-Meiwes H, Drillkens J, Lunz B, Muennix J, Rothgang S, Kowal J et al 2013 Proc. Inst. Mech. Eng., Part D 227 761CrossRefGoogle Scholar
  4. 4.
    Garche J, Moseley P T and Karden E 2015 In: B Scrosati, J Garche and W Tillmetz (eds) Advances in battery technologies for electric vehicles (Cambridge: Elsevier Ltd) p 75Google Scholar
  5. 5.
    Xu J, Thomas H R, Francis R W, Lum K R, Wang J and Liang B 2008 J. Power Sources 177 512CrossRefGoogle Scholar
  6. 6.
    Endo M, Kim Y A, Hayashi T, Nishimura K, Matusita T, Miyashita K et al 2001 Carbon 39 1287CrossRefGoogle Scholar
  7. 7.
    Shiomi M, Funato T, Nakamura K, Takahashi K and Tsubota M 1997 J. Power Sources 64 147CrossRefGoogle Scholar
  8. 8.
    Ohmae T, Hayashi T and Inoue N 2003 J. Power Sources 116 105CrossRefGoogle Scholar
  9. 9.
    Boden D P, Loosemore D V, Spence M A and Wojcinski T D 2010 J. Power Sources 195 4470CrossRefGoogle Scholar
  10. 10.
    Lam L T, Louey R, Haigh N P, Lim O V, Vella D G, Phyland C G et al 2007 J. Power Sources 174 16CrossRefGoogle Scholar
  11. 11.
    Spence M A, Boden D P and Wojcinski T D 2009 ALABC research project designation C1/1/2.1A Progress Report 4Google Scholar
  12. 12.
    Fernández M, Valenciano J, Trinidad F and Muñoz N 2010 J. Power Sources 195 4458CrossRefGoogle Scholar
  13. 13.
    Ebner E, Burow D, Börger A, Wark M, Atanassova P and Valenciano J 2013 J. Power Sources 239 483CrossRefGoogle Scholar
  14. 14.
    Understanding the function and performance of carbon-enhanced lead-acid batteries, Sandia Report 2011. Available at: http://prod.sandia.gov/techlib/access-control.cgi/2011/118263.pdf (accessed on 09 September 2016)
  15. 15.
    Kozawa A, Oho H, Sano M, Brodd D and Brodd R 1999 J. Power Sources 80 12CrossRefGoogle Scholar
  16. 16.
    Moseley P T, Nelson R F and Hollenkamp A F 2006 J. Power Sources 157 3CrossRefGoogle Scholar
  17. 17.
    Banerjee A, Saha D, Row T N G and Shukla A K 2013 Bull. Mater. Sci. 36 163CrossRefGoogle Scholar
  18. 18.
    Saravanan M, Sennu P, Ganesan M and Ambalavanan S 2012 J. Electrochem. Soc. 160 A70CrossRefGoogle Scholar
  19. 19.
    Pavlov D (ed) 2011 Lead-acid batteries: science and technology (Netherlands: Elsevier Science)Google Scholar
  20. 20.
    Pavlov D and Kapkov N 1990 J. Electrochem. Soc. 137 16CrossRefGoogle Scholar
  21. 21.
    Jung J, Zhang L and Zhang J (eds) 2015 Lead-acid battery technologies: fundamentals, materials, and applications (New York: Taylor & Francis Group)Google Scholar
  22. 22.
    Pavlov D and Iliev V 1981 J. Power Sources 7 153CrossRefGoogle Scholar
  23. 23.
    Lam L T, Haigh N P, Phyland C G and Urban A J 2004 J. Power Sources 133 126CrossRefGoogle Scholar
  24. 24.
    Fernández M, Trinidad F, Valenciano J and Sánchez A 2006 J. Power Sources 158 1149CrossRefGoogle Scholar
  25. 25.
    Moseley P T, Garche J, Parker C D and Rand D A J (eds) 2004 Valve-regulated lead-acid batteries (Netherlands: Elsevier Science)Google Scholar
  26. 26.
    Soria M L, Trinidad F, Lacadena J M, Sánchez A and Valenciano J 2007 J. Power Sources 168 12CrossRefGoogle Scholar
  27. 27.
    Moseley P T 2004 J. Power Sources 127 27CrossRefGoogle Scholar
  28. 28.
    Soria M L, Hernàndez J C, Valenciano J and Sànchez A 2005 J. Power Sources 144 473CrossRefGoogle Scholar
  29. 29.
    Sugumaran N, Everill P, Swogger S W and Dubey D P 2015 J. Power Sources 279 281CrossRefGoogle Scholar
  30. 30.
    Sawai K, Funato T, Watanabe M, Wada H, Nakamura K, Shiomi M et al 2006 J. Power Sources 158 1084CrossRefGoogle Scholar
  31. 31.
    Pavlov D and Nikolov P 2012 J. Electrochem. Soc. 159 A1215CrossRefGoogle Scholar
  32. 32.
    McNally T and Klang J 2003 J. Power Sources 116 47CrossRefGoogle Scholar
  33. 33.
    Ruetschi P 2004 J. Power Sources 127 33CrossRefGoogle Scholar
  34. 34.
    Boden D, Arias J and Fleming F A 2001 J. Power Sources 95 277CrossRefGoogle Scholar
  35. 35.
    Dietz H, Niepraschk H, Wiesener K, Garche J and Bauer J 1993 J. Power Sources 46 191CrossRefGoogle Scholar
  36. 36.
    Pavlov D, Petkova G and Rogachev T 2008 J. Power Sources 175 586CrossRefGoogle Scholar
  37. 37.
    Yamaguchi Y, Shiota M, Nakayama Y, Hirai N and Hara S 2000 J. Power Sources 85 22CrossRefGoogle Scholar
  38. 38.
    Cooper A and Moseley P T 2003 J. Power Sources 113 200CrossRefGoogle Scholar
  39. 39.
    Moseley P T, Rand D A J and Monahov B 2012 J. Power Sources 219 75CrossRefGoogle Scholar
  40. 40.
    Moseley P T, Hutchison J L, Wright C J, Bourke M A M, Hill R I and Rainey V S 1983 J. Electrochem. Soc. 130 829CrossRefGoogle Scholar
  41. 41.
    Pavlov D, Rogachev T, Nikolov P and Petkova G 2009 J. Power Sources 191 58CrossRefGoogle Scholar
  42. 42.
    Atanassova P, Pasquier A D, Oljaca M, Nikolov P, Matrakova M and Pavlov D 2014 International conference on lead-acid batteries, LABAT, p 5Google Scholar
  43. 43.
    Catherino H A, Feres F F and Trinidad F 2004 J. Power Sources 129 113CrossRefGoogle Scholar
  44. 44.
    Moseley P T 2009 J. Power Sources 191 134CrossRefGoogle Scholar
  45. 45.
    Pavlov D, Nikolov P and Rogachev T 2010 J. Power Sources 196 5155CrossRefGoogle Scholar
  46. 46.
    Carbon-carbon bonds Hybridization, Handout 2011. Available at: http://www.physik.fu-berlin.de/einrichtungen/ag/ag-reich/lehre/Archiv/ss2011/docs/Gina_Peschel-Handout.pdf (accessed on 09 September 2016)
  47. 47.
    Xiang J, Ding P, Zhang H, Wu X, Chen J and Yang Y 2013 J. Power Sources 241 150CrossRefGoogle Scholar
  48. 48.
    Marom R, Ziv B, Banerjee A, Cahana B, Luski S and Aurbach D 2015 J. Power Sources 296 78CrossRefGoogle Scholar
  49. 49.
    Banerjee A, Ziv B, Levi E, Shilina Y, Luski S and Aurbach D 2016 J. Electrochem. Soc. 163 A1518CrossRefGoogle Scholar
  50. 50.
    Banerjee A, Ziv B, Shilina Y, Levi E, Luski S and Aurbach D 2017 ACS Appl. Mater. Interfaces 9 3634CrossRefGoogle Scholar
  51. 51.
    Logeshkumar S and Manoharan R 2014 Electrochim. Acta 144 147CrossRefGoogle Scholar
  52. 52.
    Yeung K K, Zhang X, Kwok S C T, Ciucci F and Yuen M M F 2015 RSC Adv. 5 71314CrossRefGoogle Scholar
  53. 53.
    Calábek M, Micka K, Křivák P and Bača P 2006 J. Power Sources 158 864CrossRefGoogle Scholar
  54. 54.
    Pavlov D, Nikolov P and Rogachev T 2010 J. Power Sources 195 4435CrossRefGoogle Scholar
  55. 55.
    Micka K, Calábek M, Bača P, Křivák P, Lábus R and Bilko R 2009 J. Power Sources 191 154CrossRefGoogle Scholar
  56. 56.
    Shukla A K, Banerjee A, Ravikumar M K and Jalajakshi A 2012 Electrochim. Acta 84 165CrossRefGoogle Scholar
  57. 57.
    Jaiswal A and Chalasani S C 2015 J. Energy Storage 1 15CrossRefGoogle Scholar
  58. 58.
    Pavlov D and Nikolov P 2013 J. Power Sources 242 380CrossRefGoogle Scholar
  59. 59.
    Kumar R, Kumari S, Mathur R B and Dhakate S R 2015 Appl. Nanosci. 5 53CrossRefGoogle Scholar
  60. 60.
    Swogger S W, Everill P, Dubey D P and Sugumaran N 2014 J. Power Sources 261 55CrossRefGoogle Scholar
  61. 61.
    Wissler M 2006 J. Power Sources 156 142CrossRefGoogle Scholar
  62. 62.
    Shapira R, Nessim G D, Zimrin T and Aurbach D 2013 Energy Environ. Sci. 6 587CrossRefGoogle Scholar
  63. 63.
    Bullock K R 2010 J. Power Sources 195 4513CrossRefGoogle Scholar
  64. 64.
    Wong B, Jiang L X, Xue H T, Liu F Y, Jia M, Li J et al 2014 J. Power Sources 270 332CrossRefGoogle Scholar
  65. 65.
    Hariprakash B, Gaffoor S A and Shukla A K 2009 J. Power Sources 191 149CrossRefGoogle Scholar
  66. 66.
    Liu C, Yu Z, Neff D, Zhamu A and Jang B Z 2010 Nano Lett. 10 4863CrossRefGoogle Scholar
  67. 67.
    Stoller M D, Park S, Zhu Y, An J and Ruoff R S 2008 Nano Lett. 8 3498CrossRefGoogle Scholar
  68. 68.
    Ni Z H, Wang H M, Kasim J, Fan H M, Yu T, Wu Y H et al 2007 Nano Lett. 7 2758CrossRefGoogle Scholar
  69. 69.
    Du X, Skachko I, Barker A and Andrei E Y 2008 Nat. Nanotechnol. 3 491CrossRefGoogle Scholar
  70. 70.
    Kim H, Abdala A A and Macosko C W 2010 Macromolecules 43 6515CrossRefGoogle Scholar
  71. 71.
    Cinke M, Li J, Chen B, Cassell A, Delzeit L, Han J et al 2002 Chem. Phys. Lett. 365 69CrossRefGoogle Scholar
  72. 72.
    Niu C, Sichel E K, Hoch R, Moy D and Tennent H 1997 Appl. Phys. Lett. 70 1480CrossRefGoogle Scholar
  73. 73.
    Eatemadi A, Daraee H, Karimkhanloo H, Kouhi M, Zarghami N, Akbarzadeh A et al 2014 Nanoscale Res. Lett. 9 393CrossRefGoogle Scholar
  74. 74.
    Chen T and Dai L 2013 Mater. Today 16 272CrossRefGoogle Scholar
  75. 75.
    Dai L, Dai L, Chang D W, Baek J and Lu W 2012 Small 8 1130Google Scholar
  76. 76.
    Frackowiak E, Jurewicz K, Delpeux S and Béguin F 2001 J. Power Sources 97–98 822CrossRefGoogle Scholar
  77. 77.
    Futaba D N, Hata K, Yamada T, Hiraoka T, Hayamizu Y, Kakudate Y et al 2006 Nat. Mater. 5 987CrossRefGoogle Scholar
  78. 78.
    Lehman J H, Terrones M, Mansfield E, Hurst K E and Meunier V 2011 Carbon 49 2581CrossRefGoogle Scholar
  79. 79.
    Klingeler R and Sim R B (eds) 2011 Carbon nanotubes for biomedical applications (Berlin: Springer)Google Scholar
  80. 80.
    Bachtold A, Fuhrer M S, Plyasunov S, Forero M, Anderson E H, Zettl A et al 2000 Phys. Rev. Lett. 84 6082CrossRefGoogle Scholar
  81. 81.
    Fan Q, Qin Z, Liang X, Li L, Wu W and Zhu M 2010 J. Exp. Nanosci. 5 337CrossRefGoogle Scholar
  82. 82.
    Grossiord N, Loos J, Regev O and Koning C E 2006 Chem. Mater. 18 1089CrossRefGoogle Scholar
  83. 83.
    Li X, Wong S Y, Tjiu W C, Lyons B P, Oh S A and He C B 2008 Carbon 46 818CrossRefGoogle Scholar
  84. 84.
    Du J, Zhao L, Zeng Y, Zhang L, Li F, Liu P and Liu C 2010 Carbon 49 1094CrossRefGoogle Scholar
  85. 85.
    Martin-Gallego M, Bernal M M, Hernandez M, Verdejo R and Lopez-Manchado M A 2013 Eur. Polym. J. 49 1347CrossRefGoogle Scholar
  86. 86.
    Chatterjee S, N\(\ddot{\bar{{\rm u}}}\)esch F A and Chu B T T 2011 Nanotechnology 22 275714Google Scholar
  87. 87.
    Lam L T and Louey R 2006 J. Power Sources 158 1140CrossRefGoogle Scholar
  88. 88.
    Furukawa J, Takada T, Monma D and Lam L T 2010 J. Power Sources 195 1241CrossRefGoogle Scholar
  89. 89.
    Pavlov D 1997 J. Power Sources 64 131CrossRefGoogle Scholar
  90. 90.
    Hong B, Yu X, Jiang L, Xue H, Liu F, Li J et al 2014 RSC Adv. 4 33574CrossRefGoogle Scholar
  91. 91.
    Wang F, Hu C, Lian J, Zhou M, Wang K, Yan J et al 2017 RSC Adv. 7 4174CrossRefGoogle Scholar
  92. 92.
    Li W, Zhou M, Li H, Wang K, Cheng S and Jiang K 2015 Energy Environ. Sci. 8 2916CrossRefGoogle Scholar
  93. 93.
    Hariprakash B, Bera P, Martha S K, Gaffoor S A, Hegde M S and Shukla A K 2001 Electrochem. Solid State Lett. 4 A23CrossRefGoogle Scholar
  94. 94.
    Dietz H, Dittmar L, Ohms D, Radwan M and Wiesener K 1992 J. Power Sources 40 175CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringDr. B.R. Ambedkar National Institute of TechnologyJalandharIndia
  2. 2.Department of Applied PhysicsDr. B.R. Ambedkar National Institute of TechnologyJalandharIndia

Personalised recommendations