Role of nano-carbon additives in lead-acid batteries: a review
- 19 Downloads
Abstract
Development in lead (Pb)-acid batteries (LABs) is an important area of research. The improvement in this electrochemical device is imperative as it can open several new fronts of technological advancement in different sectors like automobile, telecommunications, renewable energy, etc. Since the rapid failure of a LAB due to Pb sulphation under partial-state-of-charging, electrode grid corrosion and water loss are some major obstructions in its advancement. The doping of various carbon forms into the negative active material of an electrode has been suggested to be effective at improving the storage capacity and cyclic life of LABs by suppressing irreversible sulphation. This report is an attempt to focus on different theories related to the working mechanism of carbon and to summarize the investigation results observed by various researchers regarding the significant role of nano-carbon additives in LABs. On the basis of that, we tried to compare their performance along with the discussion on the best possible additive.
Keywords
Lead-acid battery sulphation \(\hbox {PbSO}_{4 }\) crystals negative active material HRPSoC testing nano-carbon additivesNotes
Acknowledgements
The authors thank the Director, National Institute of Technology, Jalandhar (NITJ) for Technical Education Quality Improvement Programme (TEQIP-II) support. The authors would also like to thank Mr. Sudipto Ranjan Dass (DGM-R&D, Luminous Power Technologies, Una (HP), India) for his expertise that significantly assisted this work.
References
- 1.The advanced lead acid battery consortium 2016–2018. Available at: www.alabc.org/publications/overview-of-the-alabc-1618-program (accessed on 22 December 2016)
- 2.Economic-outlook, the global automotive market, Sept 14 2014. Available at: http://www.eulerhermes.com/mediacenter/Lists/mediacenter-documents/Economic-Outlook-The-global-Automotive-market-Sept14.pdf (accessed on 02 December 2016)
- 3.Budde-Meiwes H, Drillkens J, Lunz B, Muennix J, Rothgang S, Kowal J et al 2013 Proc. Inst. Mech. Eng., Part D 227 761CrossRefGoogle Scholar
- 4.Garche J, Moseley P T and Karden E 2015 In: B Scrosati, J Garche and W Tillmetz (eds) Advances in battery technologies for electric vehicles (Cambridge: Elsevier Ltd) p 75Google Scholar
- 5.Xu J, Thomas H R, Francis R W, Lum K R, Wang J and Liang B 2008 J. Power Sources 177 512CrossRefGoogle Scholar
- 6.Endo M, Kim Y A, Hayashi T, Nishimura K, Matusita T, Miyashita K et al 2001 Carbon 39 1287CrossRefGoogle Scholar
- 7.Shiomi M, Funato T, Nakamura K, Takahashi K and Tsubota M 1997 J. Power Sources 64 147CrossRefGoogle Scholar
- 8.Ohmae T, Hayashi T and Inoue N 2003 J. Power Sources 116 105CrossRefGoogle Scholar
- 9.Boden D P, Loosemore D V, Spence M A and Wojcinski T D 2010 J. Power Sources 195 4470CrossRefGoogle Scholar
- 10.Lam L T, Louey R, Haigh N P, Lim O V, Vella D G, Phyland C G et al 2007 J. Power Sources 174 16CrossRefGoogle Scholar
- 11.Spence M A, Boden D P and Wojcinski T D 2009 ALABC research project designation C1/1/2.1A Progress Report 4Google Scholar
- 12.Fernández M, Valenciano J, Trinidad F and Muñoz N 2010 J. Power Sources 195 4458CrossRefGoogle Scholar
- 13.Ebner E, Burow D, Börger A, Wark M, Atanassova P and Valenciano J 2013 J. Power Sources 239 483CrossRefGoogle Scholar
- 14.Understanding the function and performance of carbon-enhanced lead-acid batteries, Sandia Report 2011. Available at: http://prod.sandia.gov/techlib/access-control.cgi/2011/118263.pdf (accessed on 09 September 2016)
- 15.Kozawa A, Oho H, Sano M, Brodd D and Brodd R 1999 J. Power Sources 80 12CrossRefGoogle Scholar
- 16.Moseley P T, Nelson R F and Hollenkamp A F 2006 J. Power Sources 157 3CrossRefGoogle Scholar
- 17.Banerjee A, Saha D, Row T N G and Shukla A K 2013 Bull. Mater. Sci. 36 163CrossRefGoogle Scholar
- 18.Saravanan M, Sennu P, Ganesan M and Ambalavanan S 2012 J. Electrochem. Soc. 160 A70CrossRefGoogle Scholar
- 19.Pavlov D (ed) 2011 Lead-acid batteries: science and technology (Netherlands: Elsevier Science)Google Scholar
- 20.Pavlov D and Kapkov N 1990 J. Electrochem. Soc. 137 16CrossRefGoogle Scholar
- 21.Jung J, Zhang L and Zhang J (eds) 2015 Lead-acid battery technologies: fundamentals, materials, and applications (New York: Taylor & Francis Group)Google Scholar
- 22.Pavlov D and Iliev V 1981 J. Power Sources 7 153CrossRefGoogle Scholar
- 23.Lam L T, Haigh N P, Phyland C G and Urban A J 2004 J. Power Sources 133 126CrossRefGoogle Scholar
- 24.Fernández M, Trinidad F, Valenciano J and Sánchez A 2006 J. Power Sources 158 1149CrossRefGoogle Scholar
- 25.Moseley P T, Garche J, Parker C D and Rand D A J (eds) 2004 Valve-regulated lead-acid batteries (Netherlands: Elsevier Science)Google Scholar
- 26.Soria M L, Trinidad F, Lacadena J M, Sánchez A and Valenciano J 2007 J. Power Sources 168 12CrossRefGoogle Scholar
- 27.Moseley P T 2004 J. Power Sources 127 27CrossRefGoogle Scholar
- 28.Soria M L, Hernàndez J C, Valenciano J and Sànchez A 2005 J. Power Sources 144 473CrossRefGoogle Scholar
- 29.Sugumaran N, Everill P, Swogger S W and Dubey D P 2015 J. Power Sources 279 281CrossRefGoogle Scholar
- 30.Sawai K, Funato T, Watanabe M, Wada H, Nakamura K, Shiomi M et al 2006 J. Power Sources 158 1084CrossRefGoogle Scholar
- 31.Pavlov D and Nikolov P 2012 J. Electrochem. Soc. 159 A1215CrossRefGoogle Scholar
- 32.McNally T and Klang J 2003 J. Power Sources 116 47CrossRefGoogle Scholar
- 33.Ruetschi P 2004 J. Power Sources 127 33CrossRefGoogle Scholar
- 34.Boden D, Arias J and Fleming F A 2001 J. Power Sources 95 277CrossRefGoogle Scholar
- 35.Dietz H, Niepraschk H, Wiesener K, Garche J and Bauer J 1993 J. Power Sources 46 191CrossRefGoogle Scholar
- 36.Pavlov D, Petkova G and Rogachev T 2008 J. Power Sources 175 586CrossRefGoogle Scholar
- 37.Yamaguchi Y, Shiota M, Nakayama Y, Hirai N and Hara S 2000 J. Power Sources 85 22CrossRefGoogle Scholar
- 38.Cooper A and Moseley P T 2003 J. Power Sources 113 200CrossRefGoogle Scholar
- 39.Moseley P T, Rand D A J and Monahov B 2012 J. Power Sources 219 75CrossRefGoogle Scholar
- 40.Moseley P T, Hutchison J L, Wright C J, Bourke M A M, Hill R I and Rainey V S 1983 J. Electrochem. Soc. 130 829CrossRefGoogle Scholar
- 41.Pavlov D, Rogachev T, Nikolov P and Petkova G 2009 J. Power Sources 191 58CrossRefGoogle Scholar
- 42.Atanassova P, Pasquier A D, Oljaca M, Nikolov P, Matrakova M and Pavlov D 2014 International conference on lead-acid batteries, LABAT, p 5Google Scholar
- 43.Catherino H A, Feres F F and Trinidad F 2004 J. Power Sources 129 113CrossRefGoogle Scholar
- 44.Moseley P T 2009 J. Power Sources 191 134CrossRefGoogle Scholar
- 45.Pavlov D, Nikolov P and Rogachev T 2010 J. Power Sources 196 5155CrossRefGoogle Scholar
- 46.Carbon-carbon bonds Hybridization, Handout 2011. Available at: http://www.physik.fu-berlin.de/einrichtungen/ag/ag-reich/lehre/Archiv/ss2011/docs/Gina_Peschel-Handout.pdf (accessed on 09 September 2016)
- 47.Xiang J, Ding P, Zhang H, Wu X, Chen J and Yang Y 2013 J. Power Sources 241 150CrossRefGoogle Scholar
- 48.Marom R, Ziv B, Banerjee A, Cahana B, Luski S and Aurbach D 2015 J. Power Sources 296 78CrossRefGoogle Scholar
- 49.Banerjee A, Ziv B, Levi E, Shilina Y, Luski S and Aurbach D 2016 J. Electrochem. Soc. 163 A1518CrossRefGoogle Scholar
- 50.Banerjee A, Ziv B, Shilina Y, Levi E, Luski S and Aurbach D 2017 ACS Appl. Mater. Interfaces 9 3634CrossRefGoogle Scholar
- 51.Logeshkumar S and Manoharan R 2014 Electrochim. Acta 144 147CrossRefGoogle Scholar
- 52.Yeung K K, Zhang X, Kwok S C T, Ciucci F and Yuen M M F 2015 RSC Adv. 5 71314CrossRefGoogle Scholar
- 53.Calábek M, Micka K, Křivák P and Bača P 2006 J. Power Sources 158 864CrossRefGoogle Scholar
- 54.Pavlov D, Nikolov P and Rogachev T 2010 J. Power Sources 195 4435CrossRefGoogle Scholar
- 55.Micka K, Calábek M, Bača P, Křivák P, Lábus R and Bilko R 2009 J. Power Sources 191 154CrossRefGoogle Scholar
- 56.Shukla A K, Banerjee A, Ravikumar M K and Jalajakshi A 2012 Electrochim. Acta 84 165CrossRefGoogle Scholar
- 57.Jaiswal A and Chalasani S C 2015 J. Energy Storage 1 15CrossRefGoogle Scholar
- 58.Pavlov D and Nikolov P 2013 J. Power Sources 242 380CrossRefGoogle Scholar
- 59.Kumar R, Kumari S, Mathur R B and Dhakate S R 2015 Appl. Nanosci. 5 53CrossRefGoogle Scholar
- 60.Swogger S W, Everill P, Dubey D P and Sugumaran N 2014 J. Power Sources 261 55CrossRefGoogle Scholar
- 61.Wissler M 2006 J. Power Sources 156 142CrossRefGoogle Scholar
- 62.Shapira R, Nessim G D, Zimrin T and Aurbach D 2013 Energy Environ. Sci. 6 587CrossRefGoogle Scholar
- 63.Bullock K R 2010 J. Power Sources 195 4513CrossRefGoogle Scholar
- 64.Wong B, Jiang L X, Xue H T, Liu F Y, Jia M, Li J et al 2014 J. Power Sources 270 332CrossRefGoogle Scholar
- 65.Hariprakash B, Gaffoor S A and Shukla A K 2009 J. Power Sources 191 149CrossRefGoogle Scholar
- 66.Liu C, Yu Z, Neff D, Zhamu A and Jang B Z 2010 Nano Lett. 10 4863CrossRefGoogle Scholar
- 67.Stoller M D, Park S, Zhu Y, An J and Ruoff R S 2008 Nano Lett. 8 3498CrossRefGoogle Scholar
- 68.Ni Z H, Wang H M, Kasim J, Fan H M, Yu T, Wu Y H et al 2007 Nano Lett. 7 2758CrossRefGoogle Scholar
- 69.Du X, Skachko I, Barker A and Andrei E Y 2008 Nat. Nanotechnol. 3 491CrossRefGoogle Scholar
- 70.Kim H, Abdala A A and Macosko C W 2010 Macromolecules 43 6515CrossRefGoogle Scholar
- 71.Cinke M, Li J, Chen B, Cassell A, Delzeit L, Han J et al 2002 Chem. Phys. Lett. 365 69CrossRefGoogle Scholar
- 72.Niu C, Sichel E K, Hoch R, Moy D and Tennent H 1997 Appl. Phys. Lett. 70 1480CrossRefGoogle Scholar
- 73.Eatemadi A, Daraee H, Karimkhanloo H, Kouhi M, Zarghami N, Akbarzadeh A et al 2014 Nanoscale Res. Lett. 9 393CrossRefGoogle Scholar
- 74.Chen T and Dai L 2013 Mater. Today 16 272CrossRefGoogle Scholar
- 75.Dai L, Dai L, Chang D W, Baek J and Lu W 2012 Small 8 1130Google Scholar
- 76.Frackowiak E, Jurewicz K, Delpeux S and Béguin F 2001 J. Power Sources 97–98 822CrossRefGoogle Scholar
- 77.Futaba D N, Hata K, Yamada T, Hiraoka T, Hayamizu Y, Kakudate Y et al 2006 Nat. Mater. 5 987CrossRefGoogle Scholar
- 78.Lehman J H, Terrones M, Mansfield E, Hurst K E and Meunier V 2011 Carbon 49 2581CrossRefGoogle Scholar
- 79.Klingeler R and Sim R B (eds) 2011 Carbon nanotubes for biomedical applications (Berlin: Springer)Google Scholar
- 80.Bachtold A, Fuhrer M S, Plyasunov S, Forero M, Anderson E H, Zettl A et al 2000 Phys. Rev. Lett. 84 6082CrossRefGoogle Scholar
- 81.Fan Q, Qin Z, Liang X, Li L, Wu W and Zhu M 2010 J. Exp. Nanosci. 5 337CrossRefGoogle Scholar
- 82.Grossiord N, Loos J, Regev O and Koning C E 2006 Chem. Mater. 18 1089CrossRefGoogle Scholar
- 83.Li X, Wong S Y, Tjiu W C, Lyons B P, Oh S A and He C B 2008 Carbon 46 818CrossRefGoogle Scholar
- 84.Du J, Zhao L, Zeng Y, Zhang L, Li F, Liu P and Liu C 2010 Carbon 49 1094CrossRefGoogle Scholar
- 85.Martin-Gallego M, Bernal M M, Hernandez M, Verdejo R and Lopez-Manchado M A 2013 Eur. Polym. J. 49 1347CrossRefGoogle Scholar
- 86.Chatterjee S, N\(\ddot{\bar{{\rm u}}}\)esch F A and Chu B T T 2011 Nanotechnology 22 275714Google Scholar
- 87.Lam L T and Louey R 2006 J. Power Sources 158 1140CrossRefGoogle Scholar
- 88.Furukawa J, Takada T, Monma D and Lam L T 2010 J. Power Sources 195 1241CrossRefGoogle Scholar
- 89.Pavlov D 1997 J. Power Sources 64 131CrossRefGoogle Scholar
- 90.Hong B, Yu X, Jiang L, Xue H, Liu F, Li J et al 2014 RSC Adv. 4 33574CrossRefGoogle Scholar
- 91.Wang F, Hu C, Lian J, Zhou M, Wang K, Yan J et al 2017 RSC Adv. 7 4174CrossRefGoogle Scholar
- 92.Li W, Zhou M, Li H, Wang K, Cheng S and Jiang K 2015 Energy Environ. Sci. 8 2916CrossRefGoogle Scholar
- 93.Hariprakash B, Bera P, Martha S K, Gaffoor S A, Hegde M S and Shukla A K 2001 Electrochem. Solid State Lett. 4 A23CrossRefGoogle Scholar
- 94.Dietz H, Dittmar L, Ohms D, Radwan M and Wiesener K 1992 J. Power Sources 40 175CrossRefGoogle Scholar