Advertisement

\(\hbox {C}_{32}\hbox {, Si}_{32}\) and \(\hbox {B}_{16}\hbox {N}_{16}\) as anode electrodes of Li-, Na- and K-ion batteries: theoretical examination

  • Razieh Razavi
  • Behnam Nasrollahzadeh
  • Syed Abolghasem Mirhosseinei
  • Milad Janghorban Lariche
  • Meysam NajafiEmail author
Article
  • 21 Downloads

Abstract

In this study, the potential of \(\hbox {C}_{32}\hbox {, Si}_{32}\) and \(\hbox {B}_{16}\hbox {N}_{16}\) nanocages as anode electrodes of Li-, Na- and K-ion batteries via density functional theory was investigated. The effects of halogen-adoption of \(\hbox {C}_{32}\hbox {, Si}_{32}\) and \(\hbox {B}_{16}\hbox {N}_{16}\) on potentials of metal-ion batteries were examined. Results showed that \(\hbox {B}_{16}\hbox {N}_{16}\) as an anode electrode in metal-ion batteries has higher potential than \(\hbox {C}_{32}\) and \(\hbox {Si}_{32}\). Results illustrated that (i) a K-ion battery has higher cell voltage and higher performance than Li- and Na-ion batteries; (ii) halogen-adoption of nanocages increased the cell voltage of studied metal-ion batteries and (iii) F-adopted metal-ion batteries have higher cell voltage than Cl- and Br-adopted metal-ion batteries. Finally, \(\hbox {F}\)\(\hbox {B}_{15}\hbox {N}_{16}\) as an anode electrode in K-ion batteries has the highest performance and it can be proposed as novel metal-ion batteries.

Keywords

Battery nanocage adoption voltage anode and halogen 

Notes

Acknowledgements

Thank all chemist for spending their valuable time to teach me.

Supplementary material

12034_2018_1691_MOESM1_ESM.docx (21 kb)
Supplementary material 1 (docx 20 KB)

References

  1. 1.
    Slater M D, Kim D, Lee E and Johnson C S 2013 Adv. Funct. Mater. 23 947Google Scholar
  2. 2.
    Gao W, Haratipour P, Kahkha M R R and Tahvili A 2018 Ultrason. Sonochem. 44 152Google Scholar
  3. 3.
    Mahdavinia G H, Amani A M and Sepehrian H 2012 Chin. J. Chem. 30 703Google Scholar
  4. 4.
    Mostavi A, Kabir M and Ozevin D 2017 Appl. Phys. Lett. 111 201905Google Scholar
  5. 5.
    Hu P, Wang X and Wang T 2016 Adv. Sci. 3 1600112Google Scholar
  6. 6.
    Rostamizadeh S, Amani A M, Aryan R, Ghaieni H R and Norouzi L 2009 Monatsh. Chem. 140 547Google Scholar
  7. 7.
    Rostamizadeh S, Amani A M, Mahdavinia G H and Shadjou N 2009 Chin. Chem. Lett. 20 779Google Scholar
  8. 8.
    Rostamizadeh S, Aryan R, Ghaieni H R and Amani A M 2008 Monatsh. Chem. 139 1241Google Scholar
  9. 9.
    Beheshtian J and Peyghan A A 2012 Struct. Chem. 23 1567Google Scholar
  10. 10.
    Salari A A 2017 Inorg. Chim. Acta 456 18Google Scholar
  11. 11.
    Baris O, Malcioglu P and Erkoc S 2005 J. Mol. Graphics Modell. 23 367Google Scholar
  12. 12.
    Bagheri Z and Peyghan A A 2013 Comput. Theor. Chem. 1008 20Google Scholar
  13. 13.
    Mahdavinia G H, Rostamizadeh S, Amani A M and Sepehrian H 2012 Heterocycl. Commun. 18 33Google Scholar
  14. 14.
    Rostamizadeh S, Aryan R, Ghaieni H R and Amani A M 2008 Heteroat. Chem. 19 320Google Scholar
  15. 15.
    Peyghan A A, Rastegar S F and Hadipour N L 2014 Phys. Lett. A 378 2184Google Scholar
  16. 16.
    Beheshtian J, Peyghan A A and Noei M 2013 Sens. Actuators B: Chem. 181 829Google Scholar
  17. 17.
    Mahdavifar Z 2014 J. Mol. Graphics Modell. 54 32Google Scholar
  18. 18.
    Beheshtian J and Ahmadi Peyghan A 2012 Physica E 44 1963Google Scholar
  19. 19.
    Beheshtian J, Ahmadi Peyghan A and Bagheri Z 2012 J. Mol. Model. 19 255Google Scholar
  20. 20.
    Beheshtian J 2012 Monatsh. Für Chem. Mon. 143 1623Google Scholar
  21. 21.
    Beheshtian J, Peyghan A A and Bagheri Z 2012 Appl. Surf. Sci. 259 631Google Scholar
  22. 22.
    Beheshtian J and Soleymanabadi H 2012 Appl. Surf. Sci. 268 436Google Scholar
  23. 23.
    Beheshtian J and Peyghan A A 2012 Comput. Theor. Chem. 992 164Google Scholar
  24. 24.
    Rostamizadeh S, Aryan R, Ghaieni H R and Amani A M 2010 J. Heterocycl. Chem. 47 616Google Scholar
  25. 25.
    Beheshtian J, Peyghan A A and Bagheri Z 2012 Appl. Surf. Sci. 258 8980Google Scholar
  26. 26.
    Beheshtian J, Peyghan A A and Tabar M B 2013 Appl. Surf. Sci. 266 182Google Scholar
  27. 27.
    Peyghan A A, Noei M and Tabar M B 2013 J. Mol. Model. 19 3007Google Scholar
  28. 28.
    Kiani A, Haratipour P, Ahmadi M, Zare-Dorabei R and Mahmoodi A 2017 J. Water Supply Res. 66 239Google Scholar
  29. 29.
    Parsaee Z, Haratipour P, Janghorban Lariche M and Vojood A 2018 Ultrason. Sonochem. 41 337Google Scholar
  30. 30.
    Haratipour P, Baghban A, Mohammadi A H, Hosseini Nazhad S H and Bahadori A 2017 J. Mol. Liq. 242 146Google Scholar
  31. 31.
    Doranehgard M H, Samadyar H, Mesbah M, Haratipour P and Samiezade S 2017 Fuel 202 29Google Scholar
  32. 32.
    Baghban A, Sasanipour J, Haratipour P, Alizad M and Vafaee Ayouri M 2017 Chem. Eng. Res. Des. 126 67Google Scholar
  33. 33.
    Peyghan A A and Noei M 2014 J. Mex. Chem. Soc. 58 46Google Scholar
  34. 34.
    Gurung A and Naderi R 2016 Electrochim. Acta 211 720Google Scholar
  35. 35.
    Lee S W and Yabuuchi N 2010 Nat. Nanotechnol. 5 531Google Scholar
  36. 36.
    Li Y J, Liu J and Zhao X 2015 Appl. Surf. Sci. 345 337Google Scholar
  37. 37.
    Qie L, Chen W M and Wang Z H 2012 Adv. Mater. 24 2047Google Scholar
  38. 38.
    Wu Z S, Ren W, Xu L and Li F 2011 ACS Nano 5 5463Google Scholar
  39. 39.
    Liu Y, Artyukhov V I and Liu M 2013 J. Phys. Chem. Lett. 4 1737Google Scholar
  40. 40.
    Rostamizadeh S, Abdollahi F, Shadjou N and Amani A M 2013 Monatsh. Chem. 144 1191Google Scholar
  41. 41.
    Peyghan A A, Noei M and Yourdkhani S 2013 Superlattices Microstruct. 59 115Google Scholar
  42. 42.
    Amani A M 2014 Drug Res. 65 5Google Scholar
  43. 43.
    Beheshtian J, Peyghan A A and Bagheri Z 2013 Struct. Chem. 24 1565Google Scholar
  44. 44.
    Shi S, Lu P, Liu Z, Qi Y and Hector L G 2012 J. Am. Chem. Soc. 134 15476Google Scholar
  45. 45.
    Peyghan A A, Soltani A and Pahlevani A A 2013 Appl. Surf. Sci. 270 25Google Scholar
  46. 46.
    Shi S, Ouyang C, Lei M and Tang W 2007 J. Power Sources 171 908Google Scholar
  47. 47.
    Ahmadi A, Beheshtian J and Kamfiroozi M 2012 J. Mol. Model. 18 1729Google Scholar
  48. 48.
    Shi S, Gao J, Liu Y, Zhao Y, Wu Q and Ju W 2015 Chin. Phys. B 25 018212Google Scholar
  49. 49.
    Soltani A, Ahmadi Peyghan A and Bagheri Z 2013 Physica E 48 176Google Scholar
  50. 50.
    Mahdavinia G H, Rostamizadeh S, Amani A M and Mirzazadeh M 2012 Green Chem. Lett. Rev. 5 255Google Scholar
  51. 51.
    Peyghan A A, Baei M T and Moghimi M 2012 Comput. Theor. Chem. 997 63Google Scholar
  52. 52.
    Habibi A, Tarameshloo Z, Rostamizadeh S and Amani A M 2012 Lett. Org. Chem. 9 155Google Scholar
  53. 53.
    Rostamizadeh S, Ghaieni H R, Aryan R and Amani A M 2010 Synth. Commun. 40 3084Google Scholar
  54. 54.
    Beheshtian J, Kamfiroozi M and Bagheri Z 2012 Chin. J. Chem. Phys. 25 60Google Scholar
  55. 55.
    Chowdhury C H, Karmakar S H and Datta A 2016 ACS Energy Lett. 1 253Google Scholar
  56. 56.
    Karmakar S H, Chowdhury C H and Datta A 2016 J. Phys. Chem. C 120 14522Google Scholar
  57. 57.
    Luo W, Shen F, Bommier C, Zhu H, Ji X and Hu L 2016 Acc. Chem. Res. 49 231Google Scholar
  58. 58.
    Tsuneda T, Song J W, Suzuki S and Hirao K 2010 J. Chem. Phys. 133 174101Google Scholar
  59. 59.
    Kar R, Song J W and Hirao K 2013 J. Comput. Chem. 34 958Google Scholar
  60. 60.
    Hosseini J, Rastgou A and Moradi R 2017 J. Mol. Liq. 225 913Google Scholar
  61. 61.
    Najafi M 2017 Can. J. Chem. 95 687Google Scholar
  62. 62.
    Nejati K, Hosseinian A, Bekhradnia A, Vessally E and Edjlali L 2017 J. Mol. Graphics Modell. 74 1Google Scholar
  63. 63.
    Hosseinian A, Soleimani S, Arshadi S, Vessally E and Edjlali L 2017 Phys. Lett. A 381 2010Google Scholar
  64. 64.
    Andzelm J and Kolmel C 1995 J. Chem. Phys. 103 9312Google Scholar
  65. 65.
    Gan L H and Zhao J Q 2009 Physica E 41 1249Google Scholar
  66. 66.
    Schmidt M W, Baldridge K K, Boatz J A, Elbert S T, Gordon M S, Jensen J H et al 1993 J. Comput. Chem. 14 1347Google Scholar
  67. 67.
    Boys S F and Bernardi F 1970 Mol. Phys. 19 553Google Scholar
  68. 68.
    Baghban A, Sasanipour J, Haratipour P, Alizad M and Vafaee M 2017 Chem. Eng. Res. Des. 126 67Google Scholar
  69. 69.
    Beheshtian J and Soleymanabadi H 2012 J. Mol. Model. 18 2343Google Scholar
  70. 70.
    Beheshtian J, Bagheri Z and Kamfiroozi M 2012 Struct. Chem. 23 653Google Scholar
  71. 71.
    Beheshtian J, Peyghan A A and Bagheri Z 2012 Comput. Mater. Sci. 62 71Google Scholar
  72. 72.
    Freitas R Q and Gueorguiev G K 2013 Chem. Phys. Lett. 583 119Google Scholar
  73. 73.
    Asturiol D, Duran M and Salvador P 2008 J. Chem. Phys. 128 144108Google Scholar
  74. 74.
    Dunning T H 2000 J. Phys. Chem. A 104 9062Google Scholar
  75. 75.
    Song L, Ci L, Lu H and Sorokin P B 2010 Nano Lett. 10 3209Google Scholar
  76. 76.
    Bagheri Z 2016 Appl. Surf. Sci. 383 294Google Scholar
  77. 77.
    Baei M T, Peyghan A A and Bagheri Z 2012 Chin. Chem. Lett. 23 965Google Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  • Razieh Razavi
    • 1
  • Behnam Nasrollahzadeh
    • 2
  • Syed Abolghasem Mirhosseinei
    • 3
  • Milad Janghorban Lariche
    • 4
  • Meysam Najafi
    • 5
    Email author
  1. 1.Department of Chemistry, Faculty of ScienceUniversity of JiroftJiroftIran
  2. 2.Chemical Engineering Department, Faculty of EngineeringFerdowsi University of MashhadMashhadIran
  3. 3.Department of Environment, Maybod BranchIslamic Azad UniversityMaybodIran
  4. 4.Abadan School of Medical SciencesAbadanIran
  5. 5.Medical Biology Research CenterKermanshah University of Medical SciencesKermanshahIran

Personalised recommendations