Preparation of polyvinylidene fluoride-co-hexafluoropropylene-based polymer gel electrolyte and its performance evaluation for application in EDLCs

  • Mukta Tripathi
  • Santosh M Bobade
  • Anuj KumarEmail author


Polymer gel electrolyte (PGE) film is prepared by incorporating polyvinylidene fluoride-co-hexafluoropropylene (PVDF-HFP) as polymer, ethylene carbonate (EC)-propylene carbonate (PC) as plasticizers and tetraethylammonium tetrafluoroborate (\(\hbox {TEABF}_{4}\)) as salt using solution cast technique. By varying weight percentages of EC-PC-\(\hbox {TEABF}_{4}\) into a host polymer, different samples of PGE were prepared, and the concentration of EC-PC-\(\hbox {TEABF}_{4}\) was optimized for maximum conductivity, and stability of the prepared film. The maximum ionic conductivity of the order of \(4.9\times 10^{-3}\,\hbox {S cm}^{-1}\) was determined for 80 wt% of [EC-PC (1:1 v/v)-\(\hbox {TEABF}_{4}\) (1.0 M)]. From the conductivity as a function of temperature, activation energy \({E}_{\mathrm{a}}\) was calculated and it is about 0.06 eV. Overall, the amorphous structure was confirmed by X-ray diffraction analysis. Dielectric and impedance spectroscopic analysis was also carried out to understand the electrical behaviour of electrolyte using modified Debye’s function. An ionic character of prepared electrolyte was confirmed from DC polarization method. The ionic transference number of 0.91 was calculated from the data while the electrical potential stability window was found to be 3.8 V. The electrical performance of prepared PGE was examined by fabricating electrical double-layer capacitor (EDLC). In a supercapacitor, commercially procured activated carbon electrodes were employed. The specific capacitance of EDLC cell is found to be \(\sim \)60 mF cm\(^{-2}\), and equivalent single-electrode capacitance is about 39 F g\(^{-1}\).


Polymer gel electrolyte dielectric studies XRD electrical double-layer capacitor 



Financial assistance to one of the author Mukta Tripathi from Jaypee University of Engineering and Technology, Guna (MP) is gratefully acknowledged. The authors thank Professor D K Rai, JIIT, Noida (UP) for providing XRD characterization facility.


  1. 1.
    Song J Y, Wang Y Y and Wan C C 1999 J. Power Sources 77 183CrossRefGoogle Scholar
  2. 2.
    Agrawal R C and Pandey G P 2008 J. Phys. D Appl. Phys. 41 223001Google Scholar
  3. 3.
    Ciuffa F, Croce F, D’Epifanio A, Panero S and Scrosati B 2004 J. Power Sources 127 53Google Scholar
  4. 4.
    Stephan A M 2006 Eur. Polym. J. 42 21CrossRefGoogle Scholar
  5. 5.
    Dias F B, Plomp L and Veldhuis J B J 2000 J. Power Sources 88 169CrossRefGoogle Scholar
  6. 6.
    Schalkwijk W A V 2002 B Scrosati (ed) Advances in lithium-ion batteries (New York: Kluwer/Plenum Publisher)Google Scholar
  7. 7.
    Kim H S, Periasamy P and Moon S I 2005 J. Power Sources 141 293CrossRefGoogle Scholar
  8. 8.
    Vondrak J, Reiter J, Velicka J, Klapste B, Sedlarıkova M, Dvorak J et al 2005 J. Power Sources 146 436CrossRefGoogle Scholar
  9. 9.
    Akashi H, Shibuya M, Orui K, Shibamoto G and Sekai K 2002 J. Power Sources 112 577CrossRefGoogle Scholar
  10. 10.
    Quartarone E, Tomasi C, Mustarelli P, Appetecchi G B and Croce F 1998 Electrochem. Acta 43 1435CrossRefGoogle Scholar
  11. 11.
    Pandey G P, Agrawal R C and Hashmi S A 2011 J. Solid State Electrochem. 15 2253CrossRefGoogle Scholar
  12. 12.
    Arbizzani C, Mastragostino M and Soavi F 2001 J. Power Sources 100 164Google Scholar
  13. 13.
    Miller J R and Simon P 2008 Science 321 651CrossRefGoogle Scholar
  14. 14.
    Kötz R and Carlen M 2000 Electrochim. Acta 45 2483CrossRefGoogle Scholar
  15. 15.
    Burke A R 2007 Electrochim. Acta 53 1083CrossRefGoogle Scholar
  16. 16.
    Simon P and Gogotsi Y 2008 Nat. Mater. 7 845CrossRefGoogle Scholar
  17. 17.
    Barpanda P 2009 PhD thesis (New Brunswick Rutgers: The State University of New Jersey)Google Scholar
  18. 18.
    Tripathi M and Tripathi S K 2017 Ionics 23 2735CrossRefGoogle Scholar
  19. 19.
    Wilson J, Ravi G and Anbu Kulandainathan M 2006 Polímeros: Ciência e Tecnol. 16 88Google Scholar
  20. 20.
    Pandey G P, Agrawal R C and Hashmi S A 2009 J. Power Sources 190 563CrossRefGoogle Scholar
  21. 21.
    Mahendrakar S, Anna M and Reddy M J 2015 Int. J. Chem. Tech. Res8 12Google Scholar
  22. 22.
    MacCallum J R and Vincent C A (eds) 1987 Polymer Electrolyte Reviews (New York: Elsevier) Vols. I and IIGoogle Scholar
  23. 23.
    Gondaliya N, Kanchan D K, Sharma P, Pant M and Jayswal M 2010 AIP Conf. Proc1313 112Google Scholar
  24. 24.
    Kolekar Y D, Sanchez L J and Ramana C V 2014 J. Appl. Phys. 115 144106CrossRefGoogle Scholar
  25. 25.
    Dutta P, Bishwas S and De S K 2002 Mater. Res. Bull. 37 193CrossRefGoogle Scholar
  26. 26.
    Feldman Y, Puzenko A and Ryabov Y 2002 Chem. Phys. 284 139Google Scholar
  27. 27.
    Mariappan C R, Govindaraj G, Vinoth Rathan S and Vijaya Prakash G 2005 Mater. Sci. Eng. B 123 63Google Scholar
  28. 28.
    Almond D P, Hunter C C and West A R 1984 J. Mater. Sci. 19 3236CrossRefGoogle Scholar
  29. 29.
    Hashmi S A and Chandra S 1995 J. Mater. Sci. Eng. B 34 18CrossRefGoogle Scholar
  30. 30.
    Conway B E 1999 Electrochemical supercapacitors: scientific fundamentals and technical applications (New York: Kluwer Academic/Plenum)CrossRefGoogle Scholar
  31. 31.
    Hashmi S A, Latham R J, Linford R G and Schlindwein W S 1997 Ionics 3 177CrossRefGoogle Scholar
  32. 32.
    Ganesh B, Kalpana D and Renganathan N G 2008 Ionics 14 339CrossRefGoogle Scholar
  33. 33.
    Tripathi M and Kumar A 2018 Ionics
  34. 34.
    Jain A and Tripathi S K 2014 J. Renew. Sust. Energy 6 013108Google Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of PhysicsMarwadi UniversityRajkotIndia
  2. 2.Department of PhysicsJaypee University of Engineering and TechnologyGunaIndia
  3. 3.Department of PhysicsC.C.S. UniversityMeerutIndia

Personalised recommendations