Advertisement

Bulletin of Materials Science

, 41:157 | Cite as

Effects of sintering conditions on the microstructure and mechanical properties of SiC prepared using powders recovered from kerf loss sludge

  • Jun-Young Cho
  • Tae-Ho An
  • Soo Young Shin
  • Hwang Sun Kim
  • Young Seok Kim
  • Hyunick Shin
  • Sung-Hwan Bae
  • Miyoung Kim
  • Seong-Hyeon Hong
  • Chan Park
Article
  • 6 Downloads

Abstract

The effects of sintering conditions on the microstructure and mechanical properties of the sintered SiC prepared using the SiC powder recovered from the kerf loss sludge were investigated. The recovered SiC powders were consolidated by spark plasma sintering (SPS) and conventional sintering methods. The effects of sintering temperature, time and methods (SPS and conventional sintering) on the phase, grain size and density of SiC were systematically studied. The Vickers hardness of spark plasma-sintered (SPSed) samples was higher than that of conventional sintered samples due to small grain size. When holding time was increased from 10 to 30 min, the grain size and relative density of SPSed samples were also increased, which lead to the almost constant Vickers hardness by competing effects of grain size and relative density. When holding time was over 30 min, no appreciable change of the relative density and grain size were observed, which can lead to similar values of Vickers hardness. SPS process can be used to make SiC with high density and hardness at relatively low temperature compared with the conventional sintering process.

Keywords

Recovered SiC sintering conditions spark plasma sintering (SPS) conventional sintering 

Notes

Acknowledgements

This work was supported by the Industrial strategic technology development program, 10038628, the Development of a production process for SiC powder and pressureless sintered SiC funded by the Ministry of Trade, Industry & Energy (MI, Korea) and the National Research Foundation of Korea (NRF) grant funded by the Ministry of Science, ICT & Future Planning (MSIP) (no. NRF-2015R1A5A1037627).

References

  1. 1.
    Yang T C, Chang F C, Peng C Y, Wang H P and Wei Y L 2014 Environ. Technol. 36 2987CrossRefGoogle Scholar
  2. 2.
    Green M A, Emery K, King D L, Hisikawa Y and Warta W 2006 Prog. Photovoltaics 14 45CrossRefGoogle Scholar
  3. 3.
    Jang H D, Kim H, Kil D S and Chang H 2013 J. Nanosci. Nanotechnol. 13 2334CrossRefGoogle Scholar
  4. 4.
    Rodriguez H, Guerrero I, Koch W, Endrös A L, Franke D, Häßler C et al 2010 in A Luque and S Hegedus (eds) Handbook of photovoltaic science and engineering (Chichester: Wiley) p 218Google Scholar
  5. 5.
    Woditsch P and Koch W 2002 Sol. Energ. Mat. Sol. C 72 11CrossRefGoogle Scholar
  6. 6.
    Wang T, Lin Y, Tai C, Sivakumar R, Rai D and Lan C 2008 J. Cryst. Growth 310 3403CrossRefGoogle Scholar
  7. 7.
    Mühlbauer A, Diers V, Walther A and Grabmaier J 1991 J. Cryst. Growth 108 41CrossRefGoogle Scholar
  8. 8.
    Nishijima S, Izumi Y, Takeda S, Suemoto H, Nakahira A and Horie S 2003 IEEE T. Appl. Supercon. 13 1596CrossRefGoogle Scholar
  9. 9.
    Lin Y C, Wang T Y, Lan C W and Tai C Y 2010 Powder Technol. 200 216CrossRefGoogle Scholar
  10. 10.
    Shibata J, Murayama N and Nagae K 2006 Kagaku. Kogaku. Ronbun. 32 93CrossRefGoogle Scholar
  11. 11.
    Yoko A and Oshima Y 2013 J. Supercrit. Fluids 75 1CrossRefGoogle Scholar
  12. 12.
    Fthenakis V and Moskowitz P 2008 Prog. Photovoltaics 8 27CrossRefGoogle Scholar
  13. 13.
    Kim Y W and Lee J G 1983 J. Korean Ceram. Soc. 20 115Google Scholar
  14. 14.
    Presser V and Nickel K G 2008 Crit. Rev. Solid State 33 1CrossRefGoogle Scholar
  15. 15.
    Lara A, Ortiz A L, Munoz A and Domínguez-Rodríguez A 2012 Ceram. Int. 38 45CrossRefGoogle Scholar
  16. 16.
    Zhou Y, Hirao K, Toriyama M and Tanaka H 2000 J. Am. Ceram. Soc. 83 654CrossRefGoogle Scholar
  17. 17.
    Ohyanagi M, Yamamoto T, Kitaura H, Kodera Y, Ishii T and Munir Z A 2004 Scr. Mater. 50 111CrossRefGoogle Scholar
  18. 18.
    Yamamoto T A, Kondou T, Kodera Y, Ishii T, Ohyanagi M and Munir Z A 2005 J. Mater. Eng. Perform. 14 460CrossRefGoogle Scholar
  19. 19.
    Guillard F, Allemand A, Lulewicz J D and Galy J 2007 J. Eur. Ceram. Soc. 27 2725CrossRefGoogle Scholar
  20. 20.
    Lorrette C, Réau A and Briottet L 2013 J. Eur. Ceram. Soc. 33 147CrossRefGoogle Scholar
  21. 21.
    Zhang Z H, Wang F C, Luo J, Lee S K and Wang L 2010 Mat. Sci. Eng. A 527 2099CrossRefGoogle Scholar
  22. 22.
    Hayun S, Paris V, Mitrani R, Kalabukhov S, Dariel M, Zaretsky E et al 2012 Ceram. Int. 38 6335CrossRefGoogle Scholar
  23. 23.
    Lomello F, Bonnefont G, Leconte Y, Herlin-Boime N and Fantozzi G 2012 J. Eur. Ceram. Soc. 32 633CrossRefGoogle Scholar
  24. 24.
    Sakai T, Watanabe H and Aikawa T 1987 J. Mater. Sci. Lett. 6 865CrossRefGoogle Scholar
  25. 25.
    Omori M and Takei H 1988 J. Mater. Sci. 23 3744CrossRefGoogle Scholar
  26. 26.
    Borsa C, Ferreira H and Kiminami R 1999 J. Eur. Ceram. Soc. 19 615CrossRefGoogle Scholar
  27. 27.
    Zhou Y, Hirao K, Toriyama M and Tanaka H 1999 J. Mater. Res. 19 615Google Scholar
  28. 28.
    Gomez E, Echeberria J, Iturriza I and Castro F 2004 J. Eur. Ceram. Soc. 24 2895CrossRefGoogle Scholar
  29. 29.
    Unlu M D, Goller G, Yucel O and Sahin F C 2014 Acta Phys. Pol. A 125 257CrossRefGoogle Scholar
  30. 30.
    Prochazka S 1975 in P Popper (ed.) Special ceramics no. 6 (Stoke-on-Trent: British Ceramic Research Association) p 171Google Scholar
  31. 31.
    Bind J and Biggers J V 1975 J. Am. Ceram. Soc. 58 304CrossRefGoogle Scholar
  32. 32.
    Datta M, Bandyopadhyay A and Chaudhuri B 2002 Bull. Mater. Sci. 25 181CrossRefGoogle Scholar
  33. 33.
    Maitre A, Put A V, Laval J P, Valette S and Trolliard G 2008 J. Eur. Ceram. Soc. 28 1881CrossRefGoogle Scholar
  34. 34.
    Stobierski L and Gubernat A 2003 Ceram. Int. 29 287CrossRefGoogle Scholar
  35. 35.
    Guo W, Xiao H, Liu J, Liang J, Gao P and Zeng G 2015 Ceram. Int. 41 11117CrossRefGoogle Scholar
  36. 36.
    Stobierski L and Gubernat A 2003 Ceram. Int. 29 355CrossRefGoogle Scholar
  37. 37.
    Cho J Y, An T H, Ji S G, Kim Y S, Shin H I, Kim S W et al 2017 Ceram. Int. 43 15332CrossRefGoogle Scholar
  38. 38.
    Tamari N, Tanaka T, Tanaka K, Kondoh I, Kawahara M and Tokita M 1995 J. Ceram. Soc. Jpn. 103 740CrossRefGoogle Scholar
  39. 39.
    Campos K S, Silvab G F L, Nunes E H and Vasconcelos W L 2014 J. Ceram. Process. Res. 15 403Google Scholar
  40. 40.
    Tsakiris V, Kappel W, Talpeanu D, Albu F, Patroi D and Marinescu V 2014 Adv. Mater. Res. 1029 200CrossRefGoogle Scholar
  41. 41.
    Yoshimura H, Cruz A D, Zhou Y and Tanaka H 2002 J. Mater. Sci. 37 1541CrossRefGoogle Scholar
  42. 42.
    Hassan A M, Alrashdan A, Hayajneh M T and Mayyas A T 2009 J. Mater. Process. Technol. 209 894CrossRefGoogle Scholar
  43. 43.
    Akhlaghi F, Lajevardi A and Maghanaki H 2004 J. Mater. Process. Technol. 155 1874CrossRefGoogle Scholar
  44. 44.
    Kang S J L (ed.) 2004 Sintering: densification, grain growth and microstructures (Burlington: Elsevier)Google Scholar
  45. 45.
    Zhou Y, Tanaka H, Otani S and Bando Y 1999 J. Am. Ceram. Soc. 82 1959CrossRefGoogle Scholar
  46. 46.
    Chen W, Anselmi-Tamburini U, Garay J, Groza J and Munir Z A 2005 Mater. Sci. Eng. A 394 132CrossRefGoogle Scholar
  47. 47.
    Anselmi-Tamburini U, Gennari S, Garay J and Munir Z A 2005 Mater. Sci. Eng. A 394 139CrossRefGoogle Scholar
  48. 48.
    Chaim R 2007 Mater. Sci. Eng. A 443 25CrossRefGoogle Scholar
  49. 49.
    Gao L and Miyamoto H 1997 J. Inorg. Mater. 12 129Google Scholar
  50. 50.
    Lee H S, Yeo J S, Hong S H, Yoon D J and Na K H 2001 J. Mater. Process. Technol. 113 202CrossRefGoogle Scholar
  51. 51.
    Rice R W, Wu C C and Borchelt F 1994 J. Am. Ceram. Soc. 77 2539CrossRefGoogle Scholar
  52. 52.
    Zhao Y, Wang L J, Zhang G J, Jiang W and Chen L D 2009 Int. J. Refract. Met. H. 27 177CrossRefGoogle Scholar
  53. 53.
    Yamamoto T, Kitaura H, Kodera Y, Ishii T, Ohyanagi M and Munir Z A 2004 J. Am. Ceram. Soc. 87 1436CrossRefGoogle Scholar
  54. 54.
    Chen Z 1993 Mater. Lett. 17 27CrossRefGoogle Scholar
  55. 55.
    Gubernat A, Stobierski L and Labaj P 2007 J. Eur. Ceram. Soc. 27 781CrossRefGoogle Scholar
  56. 56.
    Ling H Q, Yao X M, Zhang J X, Liu X J and Huang Z R 2014 J. Eur. Ceram. Soc. 34 831CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  • Jun-Young Cho
    • 1
  • Tae-Ho An
    • 1
  • Soo Young Shin
    • 1
  • Hwang Sun Kim
    • 1
  • Young Seok Kim
    • 2
  • Hyunick Shin
    • 2
  • Sung-Hwan Bae
    • 3
  • Miyoung Kim
    • 1
  • Seong-Hyeon Hong
    • 1
  • Chan Park
    • 1
    • 4
  1. 1.Department of Materials Science and EngineeringSeoul National UniversitySeoulRepublic of Korea
  2. 2.Inocera Inc.YonginRepublic of Korea
  3. 3.Department of Nano Science and EngineeringKyungnam UniversityChangwonRepublic of Korea
  4. 4.Research Institute of Advanced MaterialsSeoul National UniversitySeoulRepublic of Korea

Personalised recommendations