Advertisement

Bulletin of Materials Science

, 41:163 | Cite as

Exfoliated \(\hbox {WS}_{2}\) nanosheets: optical, photocatalytic and nitrogen-adsorption/desorption characteristics

  • S J Hazarika
  • D Mohanta
Article
  • 9 Downloads

Abstract

In this work, we report on structural, optical, photocatalytic and nitrogen adsorption–desorption characteristics of \(\hbox {WS}_{2 }\) nanosheets developed via a hydrothermal route. X-ray diffraction (XRD) studies have revealed a hexagonal crystal structure, whereas nanodimensional sheets are apparently observed in scanning and transmission electron microscopy (SEM and TEM) micrographs. As compared to the bulk counterpart, the \(\hbox {WS}_{2}\) nanosheets exhibited a clear blue shift. Through Brunauer–Emmett–Teller (BET) surface area analysis, average surface area, pore volume and pore size of the NSs were calculated as 211.5 \(\hbox {m}^{2}~\hbox {g}^{-1}\), 0.433 cc \(\hbox {g}^{-1}\) and 3.8 nm, respectively. The photocatalytic activity of the \(\hbox {WS}_{2}\) nanosheets was also examined with malachite green (MG) as the target dye under both UV and day light (visible) illumination conditions. Accordingly, a degradation efficiency as high as 67.4 and 86.6% were witnessed for an irradiation time duration of 60 min. The nano-\(\hbox {WS}_{2}\) systems have immense potential in optoelectronics, solid-lubrication and other next generation elements.

Keywords

Nanosheets photocatalysis TMDC sorption process 

Notes

Acknowledgements

We acknowledge IUAC, New Delhi, for the financial support (Project: UFR-56322/2014 and 62312/2017). The initial assistance of Ms Mayuri Bora during experimental work is acknowledged. Further, we thank SAIC, Tezpur University, for extending several analytical facilities.

References

  1. 1.
    Chhowalla M, Shin H S, Eda G, Li L-J, Loh K P and Zhang H 2013 Nat. Chem. 5 263CrossRefGoogle Scholar
  2. 2.
    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699CrossRefGoogle Scholar
  3. 3.
    Tenne R 2006 Nat. Nanotechnol. 1103Google Scholar
  4. 4.
    Mishra A K, Lakshmi K V and Huang L 2015 Sci. Rep. 5 15718CrossRefGoogle Scholar
  5. 5.
    Vattikuti S V P, Byon C and Reddy Ch. Venkata 2016 Mater. Res. Bull. 75 193Google Scholar
  6. 6.
    Tang G, Tang H, Li C, Li W and Ji X 2011 Mat. Lett. 65 3457CrossRefGoogle Scholar
  7. 7.
    Shang Y, Xia J, China Zhude Xu and Chen W 2005 J. Disp. Sci. Technol. 26 635Google Scholar
  8. 8.
    Cao S, Liu T, Hussain S, Zeng W, Peng X and Pan F 2014 Mat. Lett. 129 205CrossRefGoogle Scholar
  9. 9.
    Srivastava S, Sinha R and Roy D 2004 Aquat. Toxicol. 66 319CrossRefGoogle Scholar
  10. 10.
    Rabieh S, Bagheri M, Heydari M and Badiei E 2014 Mater. Sci. Semicond. Process. 26 244CrossRefGoogle Scholar
  11. 11.
    Paul N, Deka A and Mohanta D 2014 J. Appl. Phys. 116 144902CrossRefGoogle Scholar
  12. 12.
    Mao X, Xu Y, Xue Q, Wang W and Gao D 2013 Nanoscale Res. Lett. 8 430CrossRefGoogle Scholar
  13. 13.
    Lin H, Wang J, Luo Q, Peng H, Luo C, Qi R et al 2017 J. Alloys Compd. 699 222CrossRefGoogle Scholar
  14. 14.
  15. 15.
    Ghorai A, Bayan S, Gogurla N, Midya A and Ray S K 2017 ACS Appl. Mater. Interfaces 558CrossRefGoogle Scholar
  16. 16.
    Nguyen T P, Choi S, Jeon J-M, Kwon K C, Jang H W and Kim S Y 2016 J. Phys. Chem. C 120 3929CrossRefGoogle Scholar
  17. 17.
    Nguyen T P, Sohn W, Oh J H, Jang H W and Kim S Y 2016 J. Phys. Chem. C 120 10078CrossRefGoogle Scholar
  18. 18.
    Molina-Sanchez A and Wirtz L 2011 Phys. Rev. B: Condens. Matter 84 155413CrossRefGoogle Scholar
  19. 19.
    Le Q V, Nguyen T P and Kim S Y 2014 Phys. Status Solidi RRL 8 390CrossRefGoogle Scholar
  20. 20.
    Berkdemir A, Gutiérrez H R, Botello-Méndez Andrés R, Perea-López Néstor, Elías Ana Laura, Chia C-I et al 2013 Sci. Rep. 3 1755Google Scholar
  21. 21.
    Hazarika S J and Mohanta D 2017 Appl. Phys. A 123 381CrossRefGoogle Scholar
  22. 22.
    Bingham S and Daoud W A 2011 J. Mater. Chem. 21 2041CrossRefGoogle Scholar
  23. 23.
    Peng T, Zhao D, Song H and Yan C 2005 J. Mol. Catal. A 238 119CrossRefGoogle Scholar
  24. 24.
    Gaya U I and Abdullah A H 2008 J. Photochem. Photobiol. C 9 1CrossRefGoogle Scholar
  25. 25.
    Vattikuti S V and Byon C 2015 Sci. Adv. Mater. 7 2639CrossRefGoogle Scholar
  26. 26.
    Alothman Z A 2012 Materials 2874CrossRefGoogle Scholar
  27. 27.
    Kruk M and Jaroniec M 2001 Chem. Mater. 13 316CrossRefGoogle Scholar
  28. 28.
    Butt H-J, Graf K and Kappl M 2006 The Kelvin equation: physics and chemistry of interfaces (Weinheim: Wiley-VCH)Google Scholar
  29. 29.
    Dutta N, Mohanta D and Choudhury A 2011 J. Appl. Phys. 109 094904CrossRefGoogle Scholar
  30. 30.
    Hazarika S and Mohanta D 2019 J. Luminescence 206 530Google Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Nanoscience and Soft Matter Laboratory, Department of PhysicsTezpur UniversityTezpurIndia

Personalised recommendations