Advertisement

Bulletin of Materials Science

, 41:146 | Cite as

Interface engineering of \(\hbox {TiO}_{2}\)@PANI nanostructures for efficient visible-light activation

  • Lin Chen
  • Sudong Yang
Article
  • 5 Downloads

Abstract

Core–shell-structured \(\hbox {TiO}_{2}\)@PANI composites were fabricated using negatively charged titanium glycolate (TG) precursor spheres, which were decorated using hydrochloric acid; subsequently, the uniform polyaniline (PANI) layer could be attached onto the surface of the polystyrene spheres by in situ chemical oxidative polymerization and finally, the resulting PANI-grafted TG were allowed to hydrolyse by treating the material with hot water. The TGs were transformed to porous \(\hbox {TiO}_{2}\), leading to the formation of core–shell \(\hbox {TiO}_{2}\)@PANI composites. The resulting \(\hbox {TiO}_{2}\)@PANI composite photocatalysts were characterized by X-ray diffraction, scanning electron microscopy, ultraviolet–visible diffuse reflection spectroscopy and photoluminescence spectroscopy. Significantly, the \(\hbox {TiO}_{2}\)@PANI composite photocatalysts exhibited dramatically enhanced photo-induced electron–hole separation efficiency, which was confirmed by the results of photocurrent measurements. PANI was dispersed uniformly over the porous \(\hbox {TiO}_{2}\) surface with an intimate electronic contact on the interface to act cooperatively to achieve enhanced photocatalytic properties, indicating that core–shell \(\hbox {TiO}_{2}\)@PANI composite photocatalysts could be promising candidate catalysts under visible-light irradiation. The mechanism of enhancing photocatalytic activity was proposed on the basis of the experimental results and estimated energy band positions.

Keywords

Photocatalysis \(\hbox {TiO}_{2}\)-based materials heterojunction efficient charge separation 

Notes

Acknowledgements

This project was supported by the Natural Science Foundation for Young Scholars Program of Xinjiang Uygur Autonomous Region (2016D01B050).

References

  1. 1.
    Liu X G, Dong G J, Li S P, Lu G X and Bi Y P 2016 J. Am. Chem. Soc. 138 2917CrossRefGoogle Scholar
  2. 2.
    Ide Y, Inami N, Hattori H, Saito K, Sohmiya M, Tsunoji N et al 2016 Angew. Chem. Int. Ed. 55 3600CrossRefGoogle Scholar
  3. 3.
    Li H D, Wang Y N, Chen G H, Sang Y H, Jiang H D, He J T et al 2016 Nanoscale 8 6101CrossRefGoogle Scholar
  4. 4.
    Zhou Y, Chen C H, Wang N N, Li Y Y and Ding H M 2016 J. Phys. Chem. C 120 6116CrossRefGoogle Scholar
  5. 5.
    Huang S L, Yu Y L, Yan Y B, Yuan J X, Yin S G and Cao Y A 2016 RSC Adv. 6 29950CrossRefGoogle Scholar
  6. 6.
    Deng F, Min L J, Luo X B, Wu S L and Luo S L 2013 Nanoscale 5 8703CrossRefGoogle Scholar
  7. 7.
    Dimitrijevic N M, Tepavcevic S, Liu Y Z, Rajh T, Silver S C and Tiede D M 2013 J. Phys. Chem. C 117 15540CrossRefGoogle Scholar
  8. 8.
    Zhang J, Wang S R, Xu M J, Wang Y, Xia H J, Zhang S M et al 2009 J. Phys. Chem. C 113 1662CrossRefGoogle Scholar
  9. 9.
    Pei Z X, Ding L Y, Lu M L, Fan Z H, Weng S X, Hu J et al 2014 J. Phys. Chem. C 118 9570CrossRefGoogle Scholar
  10. 10.
    Shirota Y and Kageyama H 2007 Chem. Rev. 107 953CrossRefGoogle Scholar
  11. 11.
    Li C P, Zhou T Z, Zhu T W and Li X Y 2015 RSC Adv. 5 98482CrossRefGoogle Scholar
  12. 12.
    Ansari M O, Khan M M, Ansari S A and Cho M H 2015 New J. Chem. 39 8381CrossRefGoogle Scholar
  13. 13.
    Wang F, Min S X, Han Y Q and Feng L 2010 Superlattices Microstruct. 48 170CrossRefGoogle Scholar
  14. 14.
    Li J, Zhu L H, Wu Y H, Harima Y, Zhang A Q and Tang H Q 2006 Polymer 47 7361CrossRefGoogle Scholar
  15. 15.
    Liao G Z, Chen S, Quan X, Zhang Y B and Zhao H M 2011 Appl. Catal. B 102 126CrossRefGoogle Scholar
  16. 16.
    Zou X X, Silva R, Huang X X, Al-Sharab J F and Asefa T 2013 Chem. Commun. 49 382CrossRefGoogle Scholar
  17. 17.
    Chen L, Yang S D, Hao B, Ruan J M and Ma P C 2015 Appl. Catal. B 166–167 287CrossRefGoogle Scholar
  18. 18.
    Safajou H, Khojasteh H, Salavati-Niasari M and Mortazavi-Derazkola S 2017 J. Colloid Interface Sci. 498 423CrossRefGoogle Scholar
  19. 19.
    Chen L, Yang S D, Mader E and Ma P C 2014 Dalton Trans. 43 12743CrossRefGoogle Scholar
  20. 20.
    Bhirud A P, Sathaye S D, Waichal R P, Ambekar J D, Park C J and Kale B B 2015 Nanoscale 7 5023CrossRefGoogle Scholar
  21. 21.
    Jing L, Yang Z Y, Zhao Y F, Zhang Y X, Guo X, Yan Y M et al 2014 J. Mater. Chem. A 2 1068CrossRefGoogle Scholar
  22. 22.
    Samsudin E M, Abd Hamid S B, Juan J C, Basirun W J, Kandjani A E and Bhargava S K 2015 RSC Adv. 5 44041CrossRefGoogle Scholar
  23. 23.
    Pradhan G K, Padhi D K and Parida K M 2013 ACS Appl. Mater. Interfaces 5 9101CrossRefGoogle Scholar
  24. 24.
    Liu C Y, Huang H W, Du X, Zhang T R, Tian N, Guo Y X et al 2015 J. Phys. Chem. C 119 17156CrossRefGoogle Scholar
  25. 25.
    Lin T Q, Yang C Y, Wang Z, Yin H, Lu X J, Huang F Q et al 2014 Energy Environ. Sci. 7 967CrossRefGoogle Scholar
  26. 26.
    Ge L, Han C C and Liu J 2012 J. Mater. Chem. 22 11843CrossRefGoogle Scholar
  27. 27.
    Khanchandani S, Kumar S and Ganguli A K 2016 ACS Sustainable Chem. Eng. 4 1487CrossRefGoogle Scholar
  28. 28.
    Gao W Y, Wang M Q, Ran C X, Yao X, Yang H H, Liu J et al 2014 Nanoscale 6 5498CrossRefGoogle Scholar
  29. 29.
    Kumar S, Baruah A, Tonda S, Kumar B, Shanker V and Sreedhar B 2014 Nanoscale 6 4830CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Xinjiang Uyghur Autonomous Region Product Quality Supervision and Inspection InstituteUrumqiPeople’s Republic of China
  2. 2.Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and ChemistryChinese Academy of SciencesUrumqiPeople’s Republic of China

Personalised recommendations