Bulletin of Materials Science

, 41:149 | Cite as

Resistance-switching properties of Bi-doped \(\hbox {SrTiO}_{3}\) films for non-volatile memory applications with different device structures

  • Hua WangEmail author
  • Wenbo Zhang
  • Jiwen Xu
  • Guobao Liu
  • Hang Xie
  • Ling Yang


\(\hbox {SrTiO}_{3}\) and Bi-doped \(\hbox {SrTiO}_{3}\) films were fabricated with different device structures using the sol–gel method for non-volatile memory applications, and their resistance-switching behaviour, endurance and retention characteristics were investigated. \(\hbox {SrTiO}_{3}\) and \(\hbox {Sr}_{0.92}\hbox {Bi}_{0.08}\hbox {TiO}_{3}\) films grown on Si or Pt have the same phase structure, morphologies and grain size; however, the grain size of the \(\hbox {Sr}_{0.92}\hbox {Bi}_{0.08}\hbox {TiO}_{3}\) films grown on Si is slightly larger than those of the \(\hbox {SrTiO}_{3}\) films grown on Si and the \(\hbox {Sr}_{0.92}\hbox {Bi}_{0.08}\hbox {TiO}_{3}\) films grown on Pt. The \(\hbox {SrTiO}_{3}\) or \(\hbox {Sr}_{0.92}\hbox {Bi}_{0.08}\hbox {TiO}_{3}\) films grown on Si or Pt all exhibit bipolar resistive-switching behaviour and follow the same conductive mechanism; however, the \(\hbox {Ag}/\hbox {Sr}_{0.92}\hbox {Bi}_{0.08}\hbox {TiO}_{3}/\hbox {Si}\) device possesses the highest \(R_{\mathrm{HRS}}{/}R_{\mathrm{LRS}}\) of \(10^{5}\) and the best endurance and retention characteristics. The doping of Bi is conducive to enhance the \(R_{\mathrm{HRS}}{/}R_{\mathrm{LRS}}\) of the \(\hbox {SrTiO}_{3}\) films; meanwhile, the Si substrates help improve the endurance and retention characteristics of the \(\hbox {Sr}_{0.92}\hbox {Bi}_{0.08}\hbox {TiO}_{3}\) films.


\(\hbox {SrTiO}_{3}\) Bi doping resistance-switching properties device structure sol–gel 



This work was financially supported by the Guangxi Natural Science Foundation, China (Grant No. 2015GXNSFAA139253).


  1. 1.
    Linn E, Rosezin R, Kügeler C and Waser R 2010 Nat. Mater. 9 403CrossRefGoogle Scholar
  2. 2.
    Pan F, Gao S, Chen C, Song C and Zeng F 2014 Mater. Sci. Eng. R-Rep. 83 1CrossRefGoogle Scholar
  3. 3.
    Wei C, Wang H, Xu J, Zhang Y, Zhang X and Yang L 2017 J. Wuhan Univ. Tech. Mater. Sci. Ed. 32 29CrossRefGoogle Scholar
  4. 4.
    Lee M J, Lee C B, Lee D, Lee S R, Chang M, Hur J H et al 2011 Nat. Mater. 10 625CrossRefGoogle Scholar
  5. 5.
    Torrezan A C, Strachan J P, Medeirosribeiro G and Williams R S 2011 Nanotechnology 22 485203CrossRefGoogle Scholar
  6. 6.
    Tang M H, Zeng Z Q, Li J C, Wang Z P, Xu X L, Wang G Y et al 2011 Solid-State Electron. 63 100CrossRefGoogle Scholar
  7. 7.
    Gao S M, Wang H, Xu J W, Yuan C L and Zhang X W 2012 Solid-State Electron. 76 40CrossRefGoogle Scholar
  8. 8.
    Yan Z B, Guo Y Y, Zhang G Q and Liu J M 2011 Adv. Mater. 23 1351CrossRefGoogle Scholar
  9. 9.
    Sun B C, Wang H, Xu J W, Yang L, Zhou S J, Zhang Y P et al 2014 Microelectron. Eng. 113 1CrossRefGoogle Scholar
  10. 10.
    Wang D, Zhao Y, Xu X, Hercule K M, Yan M, An Q et al 2014 Nanoscale 6 8124CrossRefGoogle Scholar
  11. 11.
    Peng H and Wu T 2009 Appl. Phys. Lett. 95 152106CrossRefGoogle Scholar
  12. 12.
    He Y, Dai P, Xu J, Lu Y Q and Wang H 2013 Adv. Mater. Res. 788 159CrossRefGoogle Scholar
  13. 13.
    Tang M H, Wang Z P, Li J C, Zeng Z Q, Xu X L, Wang G Y et al 2011 J. Semicond. Sci. Technol. 26 075019CrossRefGoogle Scholar
  14. 14.
    Ruth M, Tobias M, Regina D and Rainer W 2010 Adv. Mater. 22 4819CrossRefGoogle Scholar
  15. 15.
    Song M Y, Seo Y, Kim Y S, Kim H D, An H M, Park B H et al 2012 Appl. Phys. Express 5 091202CrossRefGoogle Scholar
  16. 16.
    Karczewski J, Riegel B, Gazda M, Jasinski P and Kusz B 2010 J. Electroceramics 24 326CrossRefGoogle Scholar
  17. 17.
    Hashimoto S, Poulsen F W and Mogensen M 2007 J. Alloy. Compd. 439 232CrossRefGoogle Scholar
  18. 18.
    Fu Q X, Mi S B, Wessel E and Tietz F 2008 J. Eur. Ceram. Soc. 28 811CrossRefGoogle Scholar
  19. 19.
    Xiang W, Dong R, Lee D, Oh S, Seong D and Hwang H 2007 Appl. Phys. Lett. 90 052110CrossRefGoogle Scholar
  20. 20.
    Chen X G, Ma X B, Yang Y B, Chen L P, Xiong G C, Lian G J et al 2011 Appl. Phys. Lett. 98 122102CrossRefGoogle Scholar
  21. 21.
    Zhang Y, Shen J X, Wang S L, Shen W, Cui C, Li P G et al 2012 Appl. Phys. A 109 219CrossRefGoogle Scholar
  22. 22.
    Sun J, Jia C H, Li G Q and Zhang W F 2012 Appl. Phys. Lett. 101 133506CrossRefGoogle Scholar
  23. 23.
    Kumar A and Dho J 2013 Curr. Appl. Phys. 13 768CrossRefGoogle Scholar
  24. 24.
    Menke T, Meuffels P, Dittmann R, Szot K and Waser R 2009 J. Appl. Phys. 105 066104CrossRefGoogle Scholar
  25. 25.
    Muenstermann R, Menke T, Dittmann R and Waser R 2010 Adv. Mater. 22 4819CrossRefGoogle Scholar
  26. 26.
    Wojtyniak M, Szot K, Wrzalik R, Rodenbucher C, Roth G and Waser R 2013 J. Appl. Phys. 113 083713CrossRefGoogle Scholar
  27. 27.
    Tang Z, Xiong Y, Tang M, Cheng C, Xu D, Xiao Y et al 2014 Jpn. J. Appl. Phys. 53 035503CrossRefGoogle Scholar
  28. 28.
    Shannon R D 1976 Acta Cryst. A 32 751CrossRefGoogle Scholar
  29. 29.
    Gong C, Dong G, Hu J, Chen Y, Qin M, Yang S et al 2017 J. Mater. Sci.: Mater. Electron. 28 14893Google Scholar
  30. 30.
    Lee C B, Kang B S, Benayad A, Lee M J, Ahn S E, Kim K H et al 2008 Appl. Phys. Lett. 93 042115CrossRefGoogle Scholar
  31. 31.
    Choi J H, Das S N and Myoung J M 2009 Appl. Phys. Lett. 95 062105CrossRefGoogle Scholar
  32. 32.
    Lv H, Wang M, Wan H, Song Y, Luo W, Zhou P, Tang T et al 2009 Appl. Phys. Lett. 94 213502CrossRefGoogle Scholar
  33. 33.
    Tang M H, Jiang B, Xiao Y G, Zheng Q Z, Wang Z P, Li J C et al 2012 Microelectron. Eng. 93 35CrossRefGoogle Scholar
  34. 34.
    Wang H, Li Z, Xu J, Zhang Y and Yang L 2016 J. Wuhan Univ. Tech. Mater. Sci. Ed. 31 1230CrossRefGoogle Scholar
  35. 35.
    Xie Y W, Sun J R, Wang D J, Liang S and Shen B G 2006 J. Appl. Phys. 100 033704CrossRefGoogle Scholar
  36. 36.
    Yang Y C, Pan F, Liu Q, Liu M and Zeng F 2009 Nano Lett. 9 1636CrossRefGoogle Scholar
  37. 37.
    Ielmini D 2011 IEEE Trans. Electron Devices 58 4309CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  • Hua Wang
    • 1
    Email author
  • Wenbo Zhang
    • 1
  • Jiwen Xu
    • 1
  • Guobao Liu
    • 1
  • Hang Xie
    • 1
  • Ling Yang
    • 1
  1. 1.School of Materials Science and EngineeringGuilin University of Electronic TechnologyGuilinPeople’s Republic of China

Personalised recommendations