Bulletin of Materials Science

, 41:156 | Cite as

Experimental investigations into viscosity, pH and electrical conductivity of nanofluid prepared from palm kernel fibre and a mixture of water and ethylene glycol

  • Justin T Awua
  • Jacob S Ibrahim
  • Saheed A Adio
  • Mehdi Mehrabi
  • Mohsen SharifpurEmail author
  • Josua P Meyer


Extensive research has been carried out on the synthesis and applications of nanofluid produced from metals, nonmetals and their oxides. However, little or no attention has been paid to bio-based nanoparticles. The need for the use of bio-based nanoparticles and bio-based nanofluids is imperative to mitigate over-dependence on toxic synthetic nanoparticles. This idea is also in line with renewable and sustainable developmental goals. Moreover, bio-based materials like palm kernel fibre (PKF) constitute environmental waste in some quarters and its conversion to useful products for engineering application will take a long time in solving environmental issues and health hazards. In this study, the top-down approach was used to synthesize nanoparticles from PKF using a ball-milling machine. The PKF nanoparticles with an average size of \(\sim \)40 nm were dispersed in an ethylene glycol (EG)/water (50:50) base fluid up to 0.5% of the volume fraction. The viscosity, pH and electrical conductivity of PKF–water and EG (50:50) were studied for temperature ranging from 10 to 60\(^{\circ }\)C. The results showed that the viscosity of the PKF-based nanofluid increases with an increase in volume fraction and decreases exponentially with an increase in the working temperature of the nanofluid. The pH and the electrical conductivity increased as the volume fraction of the PKF nanoparticle was increased from 0.1 to 0.5%. However, the pH decreased with an increase in the temperature while the electrical conductivity increased with an increase in the volume fraction. Since the notable theoretical models in the literature were unable to estimate the viscosity of the PKF–EG/water nanofluid, in the present case an empirical correlation based on dimensional analysis was proposed to estimate the viscosity of the PKF–EG/water nanofluids.


Nanofluid palm kernel nanofibre viscosity ethylene glycol pH electrical conductivity 


  1. 1.
    Eastman J A, Choi S U S, Li S, Yu W and Thompson L J 2001 Appl. Phys. Lett. 78 718CrossRefGoogle Scholar
  2. 2.
    Maxwell J C 1873 An Elementary Treatise on Electricity (Oxford: Clarendon Press)Google Scholar
  3. 3.
    Choi S U S and Eastman J A 1995 ASME Int. Mech. Eng. Congr. Expo. San Francisco, CA, 99Google Scholar
  4. 4.
    Chandrasekar M, Suresh S and Bose A C 2010 Exp. Therm. Fluid Sci. 34 210CrossRefGoogle Scholar
  5. 5.
    Peyghambarzadeh S M, Hashemabadi S H, Jamnani M S and Hoseini S M 2011 Appl. Therm. Eng. 31 1833CrossRefGoogle Scholar
  6. 6.
    Zamzamian A, Oskouie S N, Doosthoseini A, Joneidi A and Pazouki M 2011 Exp. Therm. Fluid Sci. 35 495CrossRefGoogle Scholar
  7. 7.
    Raud R, Hosterman B, Diana A, Steinberg T A and Will G 2017 Appl. Therm. Eng. 117 164CrossRefGoogle Scholar
  8. 8.
    Nieh H M, Teng T P and Yu C C 2014 Int. J. Therm. Sci. 77 252CrossRefGoogle Scholar
  9. 9.
    Qiao G, Lasfargues M, Alexiadis A and Ding Y 2017 Appl. Therm. Eng. 111 1517CrossRefGoogle Scholar
  10. 10.
    Elango T, Kannan A and Murugavel K K 2015 Desalination 360 45CrossRefGoogle Scholar
  11. 11.
    Kabeel A E, Omara Z M and Essa F A 2014 Energ. Convers. Manage. 86 268Google Scholar
  12. 12.
    Adio S A, Sharifpur M and Meyer J P 2015 Heat Transfer Eng. 36 1241CrossRefGoogle Scholar
  13. 13.
    Adio S A, Sharifpur M and Meyer J P 2016 J. Exp. Nanosci. 11 630CrossRefGoogle Scholar
  14. 14.
    Namburu P K, Kulkarni D P, Misra D and Das D K 2007 Exp. Therm. Fluid Sci. 32 397CrossRefGoogle Scholar
  15. 15.
    Kulkarni D, Das D and Chukwu G A 2006 J. Nanosci. Nanotechnol. 6 1Google Scholar
  16. 16.
    Kole M and Dey T K 2010 J. Phys. D Appl. Phys. 43 315501CrossRefGoogle Scholar
  17. 17.
    Adio S A, Sharifpur M and Meyer J P 2014 Proc. 15th Int. Heat Transf. Conf. Begellhouse, ConnecticutGoogle Scholar
  18. 18.
    Kole M and Dey T K 2010 Exp. Therm. Fluid Sci. 34 677CrossRefGoogle Scholar
  19. 19.
    Syam Sundar L, Venkata Ramana E, Singh M K and De Sousa A C M 2012 Chem. Phys. Lett. 554 236CrossRefGoogle Scholar
  20. 20.
    Sarojini K G K, Manoj S V, Singh P K, Pradeep T and Das S K 2013 Colloids Surf. A 417 39CrossRefGoogle Scholar
  21. 21.
    Konakanchi H, Vajjha R S, Chukwu G and Das D K 2014 Heat Transfer Eng. 36 81CrossRefGoogle Scholar
  22. 22.
    Adio S A, Sharifpur M and Meyer J P 2015 Bull. Mater. Sci. 38 1345CrossRefGoogle Scholar
  23. 23.
    Einstein A 1906 Ann. Phys. New York 4 37Google Scholar
  24. 24.
    Brinkman H C 1952 J. Chem. Phys. 20 571CrossRefGoogle Scholar
  25. 25.
    Batchelor G 1977 J. Fluid Mech. 83 97CrossRefGoogle Scholar
  26. 26.
    Krieger I and Dougherty T 1959 T. Soc. Rheol. 3 137CrossRefGoogle Scholar
  27. 27.
    Chen H, Ding Y and Tan C 2007 New J. Phys. 9 367CrossRefGoogle Scholar
  28. 28.
    Namburu P K, Das D K, Tanguturi K M and Vajjha R S 2009 Int. J. Therm. Sci. 48 290CrossRefGoogle Scholar
  29. 29.
    Adio S A, Mehrabi M, Sharifpur M and Meyer J P 2016 Int. Commun. Heat Mass 72 71CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringFederal University of AgricultureMakurdiNigeria
  2. 2.Department of Mechanical EngineeringFederal University of AgricultureMakurdiNigeria
  3. 3.Department of Mechanical and Aeronautical EngineeringUniversity of PretoriaPretoriaSouth Africa

Personalised recommendations