Bulletin of Materials Science

, 41:154 | Cite as

A review of the biological synthesis of gold nanoparticles using fruit extracts: scientific potential and application

  • Anna TimoszykEmail author


Gold nanoparticles (GNPs) are well-known nanomaterials that can be used for multiple biomedical applications. There are various methods for synthesis of GNPs using microorganisms and plants, particularly through the use of fruit extracts. Their use is due to the fact that fruit extracts are the natural concentrate of substances that possesses therapeutic properties. In this review, we aim to compare the recent studies concerning the methods for synthesis of GNPs from fruit extracts, the methods used to characterize the properties of GNPs and capping biomaterial and the potential applications of GNPs. The most frequently used methods to characterize GNPs and capping biomaterial are UV–visible spectroscopy, transmission or scanning electron microscopy, dynamic light scattering and Fourier transformation infrared spectroscopy techniques. Because of GNPs’ optoelectronic properties, biocompatibility, stability and oxidation resistance, they can be used in areas such as electronics, chemical and biological sensing, tumour imaging, drug delivery and phototherapy.


Biosynthesis gold nanoparticles fruit extracts GNP properties application 


  1. 1.
    Mittal A K, Chisti Y and Banerjee U Ch 2013 Biotechnol. Adv. 31 346Google Scholar
  2. 2.
    Youns M, Hoheisel J D and Efferth T 2011 Curr. Drug Targets. 12 357Google Scholar
  3. 3.
    Pauwels E K and Erba P 2007 Drug News Perspect. 20 213Google Scholar
  4. 4.
    Gindy M E and Prud’homme R K 2009 Expert Opin. Drug Deliv. 6 865Google Scholar
  5. 5.
    Sperling R A, Rivera Gil P, Zhang F, Zanella M and Parak W J 2008 Chem. Soc. Rev. 37 1896Google Scholar
  6. 6.
    Boisselier E and Astruc D 2009 Chem. Soc. Rev. 38 1759Google Scholar
  7. 7.
    Arvizo R R, Bhattacharyya S, Kudgus R, Giri K, Bhattacharya R and Mukherjee P 2012 Chem. Soc. Rev. 41 2943Google Scholar
  8. 8.
    Turkevich J, Stevenson P C and Hillier J 1951 Discuss Faraday Soc. 11 55Google Scholar
  9. 9.
    Kimling J, Maier M, Ovenke B, Kotaidis H, Ballot H and Plech A 2006 J. Phys. Chem. B 110 15700Google Scholar
  10. 10.
    Nikov R G, Nikolov A S, Nedyalkov N N, Dimitrov I G, Atanasov P A and Alexandrov M T 2012 Appl. Surf. Sci. 258 035016Google Scholar
  11. 11.
    Ngo V K T, Nguyen D G, Huynh T P and Lam Q V 2016 Adv. Nat. Sci.: Nanosci. Nanotechnol. 7 17Google Scholar
  12. 12.
    Yang S, Wang Y, Wang Q, Zhang R and Ding B 2007 Colloids Surf. A 301 174Google Scholar
  13. 13.
    Timoszyk A, Niedbach J, Śliżewska P, Mirończyk A and Kozioł J J 2017 J. Nano Res. 48 114Google Scholar
  14. 14.
    Pantidos N and Horsfall L E 2014 Nanomed. Nanotechnol. 5 233Google Scholar
  15. 15.
    Castro L, Blázquez L, Muňoz J A, González F G and Ballester A 2014 Rev. Adv. Sci. Eng. 3 1Google Scholar
  16. 16.
    Sintubin L, De Windt W, Dick J, Mast J, van der Ha D, Verstraete W et al 2009 Appl. Microbiol. Biotechnol. 84 741Google Scholar
  17. 17.
    Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan M I, Kumar R et al 2003 Colloids Surf. B 28 313Google Scholar
  18. 18.
    Rai M, Yadav A and Gade A 2009 Biotechnol. Adv. 27 76Google Scholar
  19. 19.
    Bar H, Bhui D K, Sahoo G P, Sarkar P, De S P and Misra A 2009 Colloids Surf. A 339 134Google Scholar
  20. 20.
    Iravani S and Zolfaghari B 2013 Biomed. Res. Int. 2013 1Google Scholar
  21. 21.
    Malarkodi Ch, Rajeshkumar S, Vanaja M, Paulkumar K, Gnanajobitha G and Annadurai G 2013 J. Nanostruct. Chem. 3 30Google Scholar
  22. 22.
    Makarov V V, Love A J, Sinitsyna O V, Makarova S S, Yaminsky I V, Taliansky M E et al 2014 Acta Nat. 1 35Google Scholar
  23. 23.
    Srivastava S K, Yamada R, Ogino Ch and Kondo A 2013 Nanoscale Res. Lett. 8 70Google Scholar
  24. 24.
    Gan P P, Ng S H, Huang Y and Li S F Y 2012 Bioresour. Technol. 113 132Google Scholar
  25. 25.
    Maiti S, Barman G and Laha J K 2014 Int. J. Sci. Eng. Res. 5 1226Google Scholar
  26. 26.
    Khan M R and Rizvi T F 2014 Plant Pathol. J. 13 214Google Scholar
  27. 27.
    Rana S, Bajaj A, Mout R and Rotello V M 2012 Adv. Drug Deliv. Rev. 64 200Google Scholar
  28. 28.
    Murphy C J, Gole A M, Stone J W, Cisco P N, Alkilany A M, Goldsmith E C et al 2008 Acc. Chem. Res. 41 1721Google Scholar
  29. 29.
    Alkilany A M and Murphy C J 2010 J. Nanopart. Res. 12 2313Google Scholar
  30. 30.
    Shah M, Fawcett D, Sharma S, Tripathy S K and Poinern G E J 2015 Materials 8 7278Google Scholar
  31. 31.
    Vadlapudi V and Kaladhar D S V G K 2014 Middle-East J. Sci. Res. 19 834Google Scholar
  32. 32.
    Shankar S S, Ahmad A, Pasricha R and Sastr M 2003 J. Mater. Chem. 13 1822Google Scholar
  33. 33.
    Mittal J, Batra A, Singh A and Sharma M M 2014 Adv. Nat. Sci.: Nanosci. Nanotechnol. 5 043002Google Scholar
  34. 34.
    Kumar V and Yadav S K 2008 J. Chem. Technol. Biotechnol. 84 151Google Scholar
  35. 35.
    Santhoshkumar, Rajeshkumar S and Venkat Kumar S 2017 Biochem. Biophys. Rep. 11 46Google Scholar
  36. 36.
    Jayaseelan C, Ramkumar R, Rahman A A and Perumal P 2013 Ind. Crop. Prod. 45 423Google Scholar
  37. 37.
    Majumdar R, Bag B G and Maity N 2013 Int. Nano Lett. 3 53Google Scholar
  38. 38.
    Andeani J K, Kazemi H, Mohsenzadeh S and Safavi A 2011 Digest J. Nanomater. Biostructures 6 1011Google Scholar
  39. 39.
    Kirubha R and Alagumuthu G 2014 Int. J. Pharm. 4 195Google Scholar
  40. 40.
    Parida U K, Bindhani B K and Nayak P L 2011 WJNSE 1 93Google Scholar
  41. 41.
    Chandran S P, Chaudhary M, Pasricha R, Ahmed A and Sastry M 2006 Biotechnol. Prog. 22 577Google Scholar
  42. 42.
    Sheny D S, Mathew J and Philip D 2011 Spectrochim. Acta A 79 254Google Scholar
  43. 43.
    Basavegowda N, Sobczak-Kupiec A, Malina D, Yathirajan H S, Keerthi V R, Chandrashekar N et al 2013 Adv. Mater. Lett. 4 332Google Scholar
  44. 44.
    Basavegowda N, Kumar G D, Tyliszczak B, Wzorek Z and Sobczak-Kupiec A 2015 Ann. Agric. Environ. Med. 22 84Google Scholar
  45. 45.
    Armendariz V, Herrera I, Peralta-Videa J R, Jose-Yacaman M, Troiani H, Santiago P et al 2004 J. Nanopart. Res. 6 377Google Scholar
  46. 46.
    Rimal Isaac R S, Sakthivel G and Murthy Ch 2013 J. Nanotechnol. 906592 1Google Scholar
  47. 47.
    Radha R, Murugalakshmi M and Kokila Rani S 2016 Int. J. Interdiscip. Res. 2 306Google Scholar
  48. 48.
    Nadagouda M N, Iyanna N, Lalley J, Han Ch, Dionysiou D D and Varma R S 2014 ACS Sustainable Chem. Eng. 2 1717Google Scholar
  49. 49.
    Kumar P, Singh P, Kumari K, Mozumdar S and Chandra R 2011 Mater. Lett. 65 595Google Scholar
  50. 50.
    Vilchis-Nestor A R, Sánchez-Mendieta V, Gómez-Espinosa R M, Camacho-López M A and Arenas-Alatorre J A 2008 Mater. Lett. 62 3103Google Scholar
  51. 51.
    Das R K, Borthakur B B and Bora U 2010 Mater. Lett. 64 1445Google Scholar
  52. 52.
    Dwivedi A D and Gopal K 2010 Colloids Surf. A 369 27Google Scholar
  53. 53.
    Liu Q, Liu H, Yuan Z, Wei D and Ye Y 2012 Colloids Surf. B 92 348Google Scholar
  54. 54.
    Smitha S L, Philip D and Gopchandran K G 2009 Spectrochim. Acta A 74 735Google Scholar
  55. 55.
    Sujitha M V and Kannan S 2013 Spectrochim. Acta A 102 15Google Scholar
  56. 56.
    Reddy Bogireddy N K, Martinez Gomez L, Osorio-Roman I and Agarval V 2017 Adv. Nano Res. 5 253Google Scholar
  57. 57.
    Narayanan K B and Sakthivel N 2010 Mater. Charact. 61 1232Google Scholar
  58. 58.
    Narayanan K B and Sakthivel N 2008 Mater. Lett. 62 4588Google Scholar
  59. 59.
    Olenic L and Chiorean I 2015 Int. J. Latest Res. Sci. Technol. 4 16Google Scholar
  60. 60.
    Sathishkumar G, Pradeep K J, Vignesh V, Rajkuberan C, Jeyaraj M, Selvakumar M et al 2016 J. Molec. Liq. 215 229Google Scholar
  61. 61.
    Vijayakumar R, Devi V, Adavallan K and Saranya D 2011 Phys. E 44 665Google Scholar
  62. 62.
    Shalaby T I, Shams El-Dine R S and Abd El-Gaber S A 2015 Nanosci. Nanotechnol. 5 89Google Scholar
  63. 63.
    Sneha K, Sathish Kumar M, Lee S Y, Bae M A and Yun Y S 2011 J. Nanosci. Nanotechnol. 11 1811Google Scholar
  64. 64.
    Shankar S S, Rai A, Ahmad A and Sastry M 2005 Chem. Mater. 17 566Google Scholar
  65. 65.
    Ghosh S, Patil S, Ahire M, Kitture R, Jabgunde A, Kale S et al 2011 J. Nanomater. 354793 1Google Scholar
  66. 66.
    Song Y, Jang H K and Kim B S 2009 Process Biochem. 44 1133Google Scholar
  67. 67.
    Annamalai A, Christina V L, Sudha D, Kalpana M and Lakshmi P T 2013 Colloids Surf. B 108 60Google Scholar
  68. 68.
    Rajan A, Meena Kumari M and Philip D 2014 Spectrochim. Acta A 118 793Google Scholar
  69. 69.
    Lee K X, Shameli K, Miyake M, Kuwano N, Khairudin N B B T A, Mohamad S E B T et al 2016 J. Nanomater. 8489094 1Google Scholar
  70. 70.
    Kumar B, Smita K, Cumbal L, Camacho J, Hernández-Gallegos E, De Guadalupe Chávez-López M, Grijalva M et al 2016 Mater. Sci. Eng. C 62 725Google Scholar
  71. 71.
    Lokina S and Narayanan V 2013 Chem. Sci. Trans. 2 S105Google Scholar
  72. 72.
    Yasmin A, Ramesh K and Rajeshkumar S 2010 Nano Convergence 1 1Google Scholar
  73. 73.
    Philip D 2010 Phys. E 42 1417Google Scholar
  74. 74.
    Kasthuri J, Veerapandian S and Rajendiran N 2009 Colloids Surf. B 68 55Google Scholar
  75. 75.
    Barman G, Maiti S and Konar Laha J 2013 Nanoscale Res. Lett. 8 181Google Scholar
  76. 76.
    Aromal S A, Vidhu V K and Philip D 2012 Spectrochim. Acta A 85 99Google Scholar
  77. 77.
    Lokina S and Narayanan V 2017 Int. J. Pharm. Bio. Sci. 8 203Google Scholar
  78. 78.
    Philip D 2010 Spectrochim. Acta A 77 807Google Scholar
  79. 79.
    Muralikrishna T, Malothu R, Pattanayak M and Nayak P L 2014 World J. Nano Sci. Technol. 3 66Google Scholar
  80. 80.
    Gardea-Torresdey L, Persons J G, Gomez E, Peralta-Videa J, Troiani H E, Santiago P et al 2002 Nano Lett. 2 397Google Scholar
  81. 81.
    Elavazhagan T and Arunachalam K D 2011 Int. J. Nanomed. 6 1265Google Scholar
  82. 82.
    Ali D M, Thajuddin N, Jeganathan K and Gunasekaran M 2011 Colloids Surf. B 85 360Google Scholar
  83. 83.
    Vankar P S and Bajpai D 2010 Ind. J. Biochem. Biophys. 47 157Google Scholar
  84. 84.
    Philip D, Unni C, Aromal S A and Vidhu V K 2011 Spectrochim. Acta A 78 899Google Scholar
  85. 85.
    Rad M S, Sharifi J, Heshmati G A, Miri A and Jyoti Sen D 2013 Am. J. Adv. Drug Deliv. 1 174Google Scholar
  86. 86.
    Philip D 2011 Phys. E 43 1318Google Scholar
  87. 87.
    Khalil M M H, Ismail E H and El-Magdoub F 2012 Arabian J. Chem. 5 431Google Scholar
  88. 88.
    Elia P, Zach R, Hazan S, Kolusheva S, Porat Z and Zeiri Y 2014 Int. J. Nanomed. 9 4007Google Scholar
  89. 89.
    Ankamwar B, Damle C, Ahmad A and Sastry M 2005 J. Nanosci. Nanotechnol. 5 1665Google Scholar
  90. 90.
    Babu P J, Sharma P, Kalita M C and Bora U 2011 Front. Mater. Sci. 5 379Google Scholar
  91. 91.
    Dauthal P and Mukhopadhyay M 2012 Ind. Eng. Chem. Res. 51 13014Google Scholar
  92. 92.
    Raghunandan D, Basavaraja S, Mahesh B, Balaji S, Manjunath S and Venkataraman A 2009 Nanobiotechnology 5 34Google Scholar
  93. 93.
    Ganeshkumar M, Sathishkumar M, Ponrasu T, Dinesh M G and Suguna L 2013 Colloids Surf. B 106 208Google Scholar
  94. 94.
    Ghodake G S, Deshpande N G, Lee Y P and Jin E S 2010 Colloids Surf. B 75 584Google Scholar
  95. 95.
    Ghoreishi S M, Behpour M and Khayatkashani M 2011 Phys. E 44 97Google Scholar
  96. 96.
    Naruzi M, Zare D, Khoshnevisan K and Davoodi D 2011 Spectrochim. Acta A 79 1461Google Scholar
  97. 97.
    Dubey S P, Lahtinen M and Sillanpää M 2010 Colloids Surf. A 364 34Google Scholar
  98. 98.
    Babu P J, Sharma P, Saranya S, Tamuli R and Bora U 2013 Nanomater. Nanotechnol. 3 1Google Scholar
  99. 99.
    Dubey S P, Lahtinen M, Särkkä H and Sillanpää M 2010 Colloids Surf. B 80 26Google Scholar
  100. 100.
    Dubey S P, Lahtinen M and Sillanpää M 2010 Process Biochem. 45 1065Google Scholar
  101. 101.
    Gopinath K, Gowri S, Karthika V and Arumugam A 2014 J. Nanostruct. Chem. 4 115Google Scholar
  102. 102.
    Kumar K M, Mandal B K, Sinha M and Krishnakumar V 2012 Spectrochim. Acta A 86 490Google Scholar
  103. 103.
    Geethalakshmi R and Sarada D L V 2012 Int. J. Nanomed. 7 5375Google Scholar
  104. 104.
    Aromal S A and Philip D 2012 Spectrochim. Acta A 97 1Google Scholar
  105. 105.
    Kirubha R and Alagumuthu G 2014 World J. Pharma. Sci. 2 146Google Scholar
  106. 106.
    Gupta A, Landis R F and Rotello V M 2016 F1000 Res. 5 364Google Scholar
  107. 107.
    Shankar S S, Rai A, Ankamwar B, Singh A, Ahmad A and Sastry M 2004 Nat. Mater. 3 482Google Scholar
  108. 108.
    Shankar S S, Ahmad A, Pasricha R and Sastry M 2003 J. Mater. Chem. 13 1822Google Scholar
  109. 109.
    Muangnapoh T, Sanon N, Yusa S-I, Viriya-Empikul N and Charinpanitkul T 2010 Curr. Appl. Phys. 10 708Google Scholar
  110. 110.
    Jain P K, Lee K S, El-Sayed I H and El-Sayed M A 2006 J. Phys. Chem. 110 7238Google Scholar
  111. 111.
    Das A K and Raj C R 2011 J. Colloid Interface Sci. 353 506Google Scholar
  112. 112.
    Philip D 2008 Spectrochim. Acta A 71 80Google Scholar
  113. 113.
    Toy R, Hayden E, Shoup Ch, Baskaran H and Karathanasis E 2011 Nanotechnology 22 115101Google Scholar
  114. 114.
    Zhang X, Yan S, Tyagi R D and Surampalli R Y 2011 Chemosphere 82 489Google Scholar
  115. 115.
    He S, Guo Z, Zhang Y, Zhang S, Wang J and Gu N 2007 Mater. Lett. 61 3984Google Scholar
  116. 116.
    Konishi Y, Tsukiyama T, Tachimi T, Saitoh N, Nomura T and Nagamine S 2007 Electrochim. Acta 53 186Google Scholar
  117. 117.
    Gericke M and Pinches A 2006 Hydrometallurgy 83 132Google Scholar
  118. 118.
    Shamaila S, Zafar N, Riaz S, Sharif R, Nazir J and Naseem S 2016 Nanomaterials 6 71Google Scholar
  119. 119.
    Balakumaran M D, Ramachandran R, Balashanmugam P, Mukeshkumar D J and Kalaichelvan P T 2016 Microbiol. Res. 182 8Google Scholar
  120. 120.
    Payne J R, Waghwani H K, Connor M G, Hamilton W, Tockstein S, Moolani H et al 2016 Front. Microbiol. 7 607Google Scholar
  121. 121.
    Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U et al 2007 Small 3 1941Google Scholar
  122. 122.
    Hilgenbrink A R 2005 J. Pharm. Sci. 94 2135Google Scholar
  123. 123.
    Kim H, Jo A, Baek S, Lim D, Park S-Y, Cho K et al 2017 Sci. Rep. 7 1Google Scholar
  124. 124.
    Hvolbæk B, Janssens T V, Clausen B S, Falsig H, Christensen C H and Nørkov J K 2007 Nanotoday 2 14Google Scholar
  125. 125.
    Li G and Jin R 2013 Nanotechnol. Rev. 2 529Google Scholar
  126. 126.
    Ma T, Yang W, Liu S, Zhang H and Liang F 2017 Catalysts 7 1Google Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Department of Biotechnology, Faculty of Biological SciencesUniversity of Zielona GóraZielona GóraPoland

Personalised recommendations