Bulletin of Materials Science

, 41:154 | Cite as

A review of the biological synthesis of gold nanoparticles using fruit extracts: scientific potential and application

  • Anna Timoszyk


Gold nanoparticles (GNPs) are well-known nanomaterials that can be used for multiple biomedical applications. There are various methods for synthesis of GNPs using microorganisms and plants, particularly through the use of fruit extracts. Their use is due to the fact that fruit extracts are the natural concentrate of substances that possesses therapeutic properties. In this review, we aim to compare the recent studies concerning the methods for synthesis of GNPs from fruit extracts, the methods used to characterize the properties of GNPs and capping biomaterial and the potential applications of GNPs. The most frequently used methods to characterize GNPs and capping biomaterial are UV–visible spectroscopy, transmission or scanning electron microscopy, dynamic light scattering and Fourier transformation infrared spectroscopy techniques. Because of GNPs’ optoelectronic properties, biocompatibility, stability and oxidation resistance, they can be used in areas such as electronics, chemical and biological sensing, tumour imaging, drug delivery and phototherapy.


Biosynthesis gold nanoparticles fruit extracts GNP properties application 


  1. 1.
    Mittal A K, Chisti Y and Banerjee U Ch 2013 Biotechnol. Adv. 31 346CrossRefGoogle Scholar
  2. 2.
    Youns M, Hoheisel J D and Efferth T 2011 Curr. Drug Targets. 12 357CrossRefGoogle Scholar
  3. 3.
    Pauwels E K and Erba P 2007 Drug News Perspect. 20 213CrossRefGoogle Scholar
  4. 4.
    Gindy M E and Prud’homme R K 2009 Expert Opin. Drug Deliv. 6 865CrossRefGoogle Scholar
  5. 5.
    Sperling R A, Rivera Gil P, Zhang F, Zanella M and Parak W J 2008 Chem. Soc. Rev. 37 1896CrossRefGoogle Scholar
  6. 6.
    Boisselier E and Astruc D 2009 Chem. Soc. Rev. 38 1759CrossRefGoogle Scholar
  7. 7.
    Arvizo R R, Bhattacharyya S, Kudgus R, Giri K, Bhattacharya R and Mukherjee P 2012 Chem. Soc. Rev. 41 2943CrossRefGoogle Scholar
  8. 8.
    Turkevich J, Stevenson P C and Hillier J 1951 Discuss Faraday Soc. 11 55CrossRefGoogle Scholar
  9. 9.
    Kimling J, Maier M, Ovenke B, Kotaidis H, Ballot H and Plech A 2006 J. Phys. Chem. B 110 15700CrossRefGoogle Scholar
  10. 10.
    Nikov R G, Nikolov A S, Nedyalkov N N, Dimitrov I G, Atanasov P A and Alexandrov M T 2012 Appl. Surf. Sci. 258 035016CrossRefGoogle Scholar
  11. 11.
    Ngo V K T, Nguyen D G, Huynh T P and Lam Q V 2016 Adv. Nat. Sci.: Nanosci. Nanotechnol. 7 17Google Scholar
  12. 12.
    Yang S, Wang Y, Wang Q, Zhang R and Ding B 2007 Colloids Surf. A 301 174CrossRefGoogle Scholar
  13. 13.
    Timoszyk A, Niedbach J, Śliżewska P, Mirończyk A and Kozioł J J 2017 J. Nano Res. 48 114CrossRefGoogle Scholar
  14. 14.
    Pantidos N and Horsfall L E 2014 Nanomed. Nanotechnol. 5 233Google Scholar
  15. 15.
    Castro L, Blázquez L, Muňoz J A, González F G and Ballester A 2014 Rev. Adv. Sci. Eng. 3 1CrossRefGoogle Scholar
  16. 16.
    Sintubin L, De Windt W, Dick J, Mast J, van der Ha D, Verstraete W et al 2009 Appl. Microbiol. Biotechnol. 84 741CrossRefGoogle Scholar
  17. 17.
    Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan M I, Kumar R et al 2003 Colloids Surf. B 28 313CrossRefGoogle Scholar
  18. 18.
    Rai M, Yadav A and Gade A 2009 Biotechnol. Adv. 27 76CrossRefGoogle Scholar
  19. 19.
    Bar H, Bhui D K, Sahoo G P, Sarkar P, De S P and Misra A 2009 Colloids Surf. A 339 134CrossRefGoogle Scholar
  20. 20.
    Iravani S and Zolfaghari B 2013 Biomed. Res. Int. 2013 1CrossRefGoogle Scholar
  21. 21.
    Malarkodi Ch, Rajeshkumar S, Vanaja M, Paulkumar K, Gnanajobitha G and Annadurai G 2013 J. Nanostruct. Chem. 3 30CrossRefGoogle Scholar
  22. 22.
    Makarov V V, Love A J, Sinitsyna O V, Makarova S S, Yaminsky I V, Taliansky M E et al 2014 Acta Nat. 1 35Google Scholar
  23. 23.
    Srivastava S K, Yamada R, Ogino Ch and Kondo A 2013 Nanoscale Res. Lett. 8 70CrossRefGoogle Scholar
  24. 24.
    Gan P P, Ng S H, Huang Y and Li S F Y 2012 Bioresour. Technol. 113 132CrossRefGoogle Scholar
  25. 25.
    Maiti S, Barman G and Laha J K 2014 Int. J. Sci. Eng. Res. 5 1226Google Scholar
  26. 26.
    Khan M R and Rizvi T F 2014 Plant Pathol. J. 13 214CrossRefGoogle Scholar
  27. 27.
    Rana S, Bajaj A, Mout R and Rotello V M 2012 Adv. Drug Deliv. Rev. 64 200CrossRefGoogle Scholar
  28. 28.
    Murphy C J, Gole A M, Stone J W, Cisco P N, Alkilany A M, Goldsmith E C et al 2008 Acc. Chem. Res. 41 1721CrossRefGoogle Scholar
  29. 29.
    Alkilany A M and Murphy C J 2010 J. Nanopart. Res. 12 2313CrossRefGoogle Scholar
  30. 30.
    Shah M, Fawcett D, Sharma S, Tripathy S K and Poinern G E J 2015 Materials 8 7278CrossRefGoogle Scholar
  31. 31.
    Vadlapudi V and Kaladhar D S V G K 2014 Middle-East J. Sci. Res. 19 834Google Scholar
  32. 32.
    Shankar S S, Ahmad A, Pasricha R and Sastr M 2003 J. Mater. Chem. 13 1822CrossRefGoogle Scholar
  33. 33.
    Mittal J, Batra A, Singh A and Sharma M M 2014 Adv. Nat. Sci.: Nanosci. Nanotechnol. 5 043002Google Scholar
  34. 34.
    Kumar V and Yadav S K 2008 J. Chem. Technol. Biotechnol. 84 151CrossRefGoogle Scholar
  35. 35.
    Santhoshkumar, Rajeshkumar S and Venkat Kumar S 2017 Biochem. Biophys. Rep. 11 46Google Scholar
  36. 36.
    Jayaseelan C, Ramkumar R, Rahman A A and Perumal P 2013 Ind. Crop. Prod. 45 423CrossRefGoogle Scholar
  37. 37.
    Majumdar R, Bag B G and Maity N 2013 Int. Nano Lett. 3 53CrossRefGoogle Scholar
  38. 38.
    Andeani J K, Kazemi H, Mohsenzadeh S and Safavi A 2011 Digest J. Nanomater. Biostructures 6 1011Google Scholar
  39. 39.
    Kirubha R and Alagumuthu G 2014 Int. J. Pharm. 4 195Google Scholar
  40. 40.
    Parida U K, Bindhani B K and Nayak P L 2011 WJNSE 1 93CrossRefGoogle Scholar
  41. 41.
    Chandran S P, Chaudhary M, Pasricha R, Ahmed A and Sastry M 2006 Biotechnol. Prog. 22 577CrossRefGoogle Scholar
  42. 42.
    Sheny D S, Mathew J and Philip D 2011 Spectrochim. Acta A 79 254CrossRefGoogle Scholar
  43. 43.
    Basavegowda N, Sobczak-Kupiec A, Malina D, Yathirajan H S, Keerthi V R, Chandrashekar N et al 2013 Adv. Mater. Lett. 4 332CrossRefGoogle Scholar
  44. 44.
    Basavegowda N, Kumar G D, Tyliszczak B, Wzorek Z and Sobczak-Kupiec A 2015 Ann. Agric. Environ. Med. 22 84CrossRefGoogle Scholar
  45. 45.
    Armendariz V, Herrera I, Peralta-Videa J R, Jose-Yacaman M, Troiani H, Santiago P et al 2004 J. Nanopart. Res. 6 377CrossRefGoogle Scholar
  46. 46.
    Rimal Isaac R S, Sakthivel G and Murthy Ch 2013 J. Nanotechnol. 906592 1CrossRefGoogle Scholar
  47. 47.
    Radha R, Murugalakshmi M and Kokila Rani S 2016 Int. J. Interdiscip. Res. 2 306Google Scholar
  48. 48.
    Nadagouda M N, Iyanna N, Lalley J, Han Ch, Dionysiou D D and Varma R S 2014 ACS Sustainable Chem. Eng. 2 1717CrossRefGoogle Scholar
  49. 49.
    Kumar P, Singh P, Kumari K, Mozumdar S and Chandra R 2011 Mater. Lett. 65 595CrossRefGoogle Scholar
  50. 50.
    Vilchis-Nestor A R, Sánchez-Mendieta V, Gómez-Espinosa R M, Camacho-López M A and Arenas-Alatorre J A 2008 Mater. Lett. 62 3103CrossRefGoogle Scholar
  51. 51.
    Das R K, Borthakur B B and Bora U 2010 Mater. Lett. 64 1445CrossRefGoogle Scholar
  52. 52.
    Dwivedi A D and Gopal K 2010 Colloids Surf. A 369 27CrossRefGoogle Scholar
  53. 53.
    Liu Q, Liu H, Yuan Z, Wei D and Ye Y 2012 Colloids Surf. B 92 348CrossRefGoogle Scholar
  54. 54.
    Smitha S L, Philip D and Gopchandran K G 2009 Spectrochim. Acta A 74 735CrossRefGoogle Scholar
  55. 55.
    Sujitha M V and Kannan S 2013 Spectrochim. Acta A 102 15CrossRefGoogle Scholar
  56. 56.
    Reddy Bogireddy N K, Martinez Gomez L, Osorio-Roman I and Agarval V 2017 Adv. Nano Res. 5 253Google Scholar
  57. 57.
    Narayanan K B and Sakthivel N 2010 Mater. Charact. 61 1232CrossRefGoogle Scholar
  58. 58.
    Narayanan K B and Sakthivel N 2008 Mater. Lett. 62 4588CrossRefGoogle Scholar
  59. 59.
    Olenic L and Chiorean I 2015 Int. J. Latest Res. Sci. Technol. 4 16Google Scholar
  60. 60.
    Sathishkumar G, Pradeep K J, Vignesh V, Rajkuberan C, Jeyaraj M, Selvakumar M et al 2016 J. Molec. Liq. 215 229CrossRefGoogle Scholar
  61. 61.
    Vijayakumar R, Devi V, Adavallan K and Saranya D 2011 Phys. E 44 665CrossRefGoogle Scholar
  62. 62.
    Shalaby T I, Shams El-Dine R S and Abd El-Gaber S A 2015 Nanosci. Nanotechnol. 5 89Google Scholar
  63. 63.
    Sneha K, Sathish Kumar M, Lee S Y, Bae M A and Yun Y S 2011 J. Nanosci. Nanotechnol. 11 1811CrossRefGoogle Scholar
  64. 64.
    Shankar S S, Rai A, Ahmad A and Sastry M 2005 Chem. Mater. 17 566CrossRefGoogle Scholar
  65. 65.
    Ghosh S, Patil S, Ahire M, Kitture R, Jabgunde A, Kale S et al 2011 J. Nanomater. 354793 1CrossRefGoogle Scholar
  66. 66.
    Song Y, Jang H K and Kim B S 2009 Process Biochem. 44 1133CrossRefGoogle Scholar
  67. 67.
    Annamalai A, Christina V L, Sudha D, Kalpana M and Lakshmi P T 2013 Colloids Surf. B 108 60CrossRefGoogle Scholar
  68. 68.
    Rajan A, Meena Kumari M and Philip D 2014 Spectrochim. Acta A 118 793CrossRefGoogle Scholar
  69. 69.
    Lee K X, Shameli K, Miyake M, Kuwano N, Khairudin N B B T A, Mohamad S E B T et al 2016 J. Nanomater. 8489094 1Google Scholar
  70. 70.
    Kumar B, Smita K, Cumbal L, Camacho J, Hernández-Gallegos E, De Guadalupe Chávez-López M, Grijalva M et al 2016 Mater. Sci. Eng. C 62 725CrossRefGoogle Scholar
  71. 71.
    Lokina S and Narayanan V 2013 Chem. Sci. Trans. 2 S105Google Scholar
  72. 72.
    Yasmin A, Ramesh K and Rajeshkumar S 2010 Nano Convergence 1 1Google Scholar
  73. 73.
    Philip D 2010 Phys. E 42 1417CrossRefGoogle Scholar
  74. 74.
    Kasthuri J, Veerapandian S and Rajendiran N 2009 Colloids Surf. B 68 55CrossRefGoogle Scholar
  75. 75.
    Barman G, Maiti S and Konar Laha J 2013 Nanoscale Res. Lett. 8 181CrossRefGoogle Scholar
  76. 76.
    Aromal S A, Vidhu V K and Philip D 2012 Spectrochim. Acta A 85 99CrossRefGoogle Scholar
  77. 77.
    Lokina S and Narayanan V 2017 Int. J. Pharm. Bio. Sci. 8 203Google Scholar
  78. 78.
    Philip D 2010 Spectrochim. Acta A 77 807CrossRefGoogle Scholar
  79. 79.
    Muralikrishna T, Malothu R, Pattanayak M and Nayak P L 2014 World J. Nano Sci. Technol. 3 66Google Scholar
  80. 80.
    Gardea-Torresdey L, Persons J G, Gomez E, Peralta-Videa J, Troiani H E, Santiago P et al 2002 Nano Lett. 2 397CrossRefGoogle Scholar
  81. 81.
    Elavazhagan T and Arunachalam K D 2011 Int. J. Nanomed. 6 1265CrossRefGoogle Scholar
  82. 82.
    Ali D M, Thajuddin N, Jeganathan K and Gunasekaran M 2011 Colloids Surf. B 85 360CrossRefGoogle Scholar
  83. 83.
    Vankar P S and Bajpai D 2010 Ind. J. Biochem. Biophys. 47 157Google Scholar
  84. 84.
    Philip D, Unni C, Aromal S A and Vidhu V K 2011 Spectrochim. Acta A 78 899CrossRefGoogle Scholar
  85. 85.
    Rad M S, Sharifi J, Heshmati G A, Miri A and Jyoti Sen D 2013 Am. J. Adv. Drug Deliv. 1 174Google Scholar
  86. 86.
    Philip D 2011 Phys. E 43 1318CrossRefGoogle Scholar
  87. 87.
    Khalil M M H, Ismail E H and El-Magdoub F 2012 Arabian J. Chem. 5 431CrossRefGoogle Scholar
  88. 88.
    Elia P, Zach R, Hazan S, Kolusheva S, Porat Z and Zeiri Y 2014 Int. J. Nanomed. 9 4007Google Scholar
  89. 89.
    Ankamwar B, Damle C, Ahmad A and Sastry M 2005 J. Nanosci. Nanotechnol. 5 1665CrossRefGoogle Scholar
  90. 90.
    Babu P J, Sharma P, Kalita M C and Bora U 2011 Front. Mater. Sci. 5 379CrossRefGoogle Scholar
  91. 91.
    Dauthal P and Mukhopadhyay M 2012 Ind. Eng. Chem. Res. 51 13014CrossRefGoogle Scholar
  92. 92.
    Raghunandan D, Basavaraja S, Mahesh B, Balaji S, Manjunath S and Venkataraman A 2009 Nanobiotechnology 5 34CrossRefGoogle Scholar
  93. 93.
    Ganeshkumar M, Sathishkumar M, Ponrasu T, Dinesh M G and Suguna L 2013 Colloids Surf. B 106 208CrossRefGoogle Scholar
  94. 94.
    Ghodake G S, Deshpande N G, Lee Y P and Jin E S 2010 Colloids Surf. B 75 584CrossRefGoogle Scholar
  95. 95.
    Ghoreishi S M, Behpour M and Khayatkashani M 2011 Phys. E 44 97CrossRefGoogle Scholar
  96. 96.
    Naruzi M, Zare D, Khoshnevisan K and Davoodi D 2011 Spectrochim. Acta A 79 1461CrossRefGoogle Scholar
  97. 97.
    Dubey S P, Lahtinen M and Sillanpää M 2010 Colloids Surf. A 364 34CrossRefGoogle Scholar
  98. 98.
    Babu P J, Sharma P, Saranya S, Tamuli R and Bora U 2013 Nanomater. Nanotechnol. 3 1CrossRefGoogle Scholar
  99. 99.
    Dubey S P, Lahtinen M, Särkkä H and Sillanpää M 2010 Colloids Surf. B 80 26CrossRefGoogle Scholar
  100. 100.
    Dubey S P, Lahtinen M and Sillanpää M 2010 Process Biochem. 45 1065CrossRefGoogle Scholar
  101. 101.
    Gopinath K, Gowri S, Karthika V and Arumugam A 2014 J. Nanostruct. Chem. 4 115CrossRefGoogle Scholar
  102. 102.
    Kumar K M, Mandal B K, Sinha M and Krishnakumar V 2012 Spectrochim. Acta A 86 490CrossRefGoogle Scholar
  103. 103.
    Geethalakshmi R and Sarada D L V 2012 Int. J. Nanomed. 7 5375CrossRefGoogle Scholar
  104. 104.
    Aromal S A and Philip D 2012 Spectrochim. Acta A 97 1CrossRefGoogle Scholar
  105. 105.
    Kirubha R and Alagumuthu G 2014 World J. Pharma. Sci. 2 146Google Scholar
  106. 106.
    Gupta A, Landis R F and Rotello V M 2016 F1000 Res. 5 364Google Scholar
  107. 107.
    Shankar S S, Rai A, Ankamwar B, Singh A, Ahmad A and Sastry M 2004 Nat. Mater. 3 482CrossRefGoogle Scholar
  108. 108.
    Shankar S S, Ahmad A, Pasricha R and Sastry M 2003 J. Mater. Chem. 13 1822CrossRefGoogle Scholar
  109. 109.
    Muangnapoh T, Sanon N, Yusa S-I, Viriya-Empikul N and Charinpanitkul T 2010 Curr. Appl. Phys. 10 708CrossRefGoogle Scholar
  110. 110.
    Jain P K, Lee K S, El-Sayed I H and El-Sayed M A 2006 J. Phys. Chem. 110 7238CrossRefGoogle Scholar
  111. 111.
    Das A K and Raj C R 2011 J. Colloid Interface Sci. 353 506CrossRefGoogle Scholar
  112. 112.
    Philip D 2008 Spectrochim. Acta A 71 80CrossRefGoogle Scholar
  113. 113.
    Toy R, Hayden E, Shoup Ch, Baskaran H and Karathanasis E 2011 Nanotechnology 22 115101CrossRefGoogle Scholar
  114. 114.
    Zhang X, Yan S, Tyagi R D and Surampalli R Y 2011 Chemosphere 82 489CrossRefGoogle Scholar
  115. 115.
    He S, Guo Z, Zhang Y, Zhang S, Wang J and Gu N 2007 Mater. Lett. 61 3984CrossRefGoogle Scholar
  116. 116.
    Konishi Y, Tsukiyama T, Tachimi T, Saitoh N, Nomura T and Nagamine S 2007 Electrochim. Acta 53 186CrossRefGoogle Scholar
  117. 117.
    Gericke M and Pinches A 2006 Hydrometallurgy 83 132CrossRefGoogle Scholar
  118. 118.
    Shamaila S, Zafar N, Riaz S, Sharif R, Nazir J and Naseem S 2016 Nanomaterials 6 71CrossRefGoogle Scholar
  119. 119.
    Balakumaran M D, Ramachandran R, Balashanmugam P, Mukeshkumar D J and Kalaichelvan P T 2016 Microbiol. Res. 182 8CrossRefGoogle Scholar
  120. 120.
    Payne J R, Waghwani H K, Connor M G, Hamilton W, Tockstein S, Moolani H et al 2016 Front. Microbiol. 7 607CrossRefGoogle Scholar
  121. 121.
    Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U et al 2007 Small 3 1941CrossRefGoogle Scholar
  122. 122.
    Hilgenbrink A R 2005 J. Pharm. Sci. 94 2135CrossRefGoogle Scholar
  123. 123.
    Kim H, Jo A, Baek S, Lim D, Park S-Y, Cho K et al 2017 Sci. Rep. 7 1CrossRefGoogle Scholar
  124. 124.
    Hvolbæk B, Janssens T V, Clausen B S, Falsig H, Christensen C H and Nørkov J K 2007 Nanotoday 2 14CrossRefGoogle Scholar
  125. 125.
    Li G and Jin R 2013 Nanotechnol. Rev. 2 529Google Scholar
  126. 126.
    Ma T, Yang W, Liu S, Zhang H and Liang F 2017 Catalysts 7 1Google Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Department of Biotechnology, Faculty of Biological SciencesUniversity of Zielona GóraZielona GóraPoland

Personalised recommendations