Bulletin of Materials Science

, 41:153 | Cite as

Effects of conjugation on the properties of alkynylcarbazole compounds: experimental and theoretical study

  • Hussain Ahmed Abro
  • Baodong Zhao
  • Weixiang Han
  • Xiaoyu Ma
  • Tao WangEmail author


Four novel dyes containing alkynylcarbazole, namely, 2-((9H-carbazol-3-yl)ethynyl)-9-ethyl-9H-carbazole, 3,6-bis((9-ethyl-9H-carbazol-2-yl)ethynyl)-9H-carbazole, 3-(phenylethynyl)-9H-carbazole and 3,6-bis(phenylethynyl)-9H-carbazole, were synthesized on the basis of single and double substitutes by following the Sonogashira coupling method. The synthesized dyes were then assessed as novel photosensitizers in visible-light photopolymerization to evaluate the effects of conjugation on the properties of aromatic compounds. A comparison between UV–vis and TD/DFT electron transition spectra shows that \(\lambda _{\mathrm{max}}\) in theoretical ultraviolet spectra matched well with the experimental spectra; every conjugated alkynylcarbazole dye exhibits a wide absorption band in the range of 300–400 mm. Moreover, conjugation enhancement by switching carbazoleacetylene moieties caused a red shift in the absorption bands. The theoretical study showed that the maxima \(\lambda \) of these molecules ranged from \(\sim \)330 to 370 mm, corresponding to \(\pi {\rightarrow }\pi ^{*}\) and \({n}{\rightarrow }\pi ^{*}\) electron transitions. Fluorescence spectroscopic data show that the strongest emission peaks exhibit a red shift because of the addition of conjugated acetylene groups. A combination of alkynyl dyes and iodonium under a halogen lamp atmosphere by visible-light photopolymerization displayed a positive response to the cationic polymerization of bisphenol-A epoxy resin A and free-radical polymerization of tripropylene glycol diacrylate.


Synthesis alkynylcarbazole DFT calculations photosensitizers photopolymerization 



We acknowledge the National Key R&D Plan (project grant code: 2017YFB0307800) for providing them financial support. Additionally, they are very thankful to the Beijing University of Chemical Technology CHEMCLOUDCOMPUTING platform for providing support for computational work.

Supplementary material

12034_2018_1672_MOESM1_ESM.docx (2 mb)
Supplementary material 1 (docx 2053 KB)


  1. 1.
    Minezawa N 2015 Chem. Phys. Lett. 622 115CrossRefGoogle Scholar
  2. 2.
    Sacarescu L, Fortuna M, Soroceanu M, Cojocaru C, Sacarescu G, Simionescu M et al 2015 Silicon 7 343CrossRefGoogle Scholar
  3. 3.
    Crivello J V and Jiang F 2002 Chem. Mater. 14 4858CrossRefGoogle Scholar
  4. 4.
    Crivello J V and Jang M 2005 J. Macromol. Sci. Part A Pure Appl. Chem. A 42 1Google Scholar
  5. 5.
    Xiao P, Lalevee J, Zhao J and Stenzel M H 2015 Macromol. Rapid. Commun. 36 1675CrossRefGoogle Scholar
  6. 6.
    Zhang J, Campolo D, Dumur F, Xiao P, Gigmes D, Fouassier J P et al 2016 Polym. Bull. 73 493CrossRefGoogle Scholar
  7. 7.
    Zhou T F, Ma X Y, Han W X, Guo X P, Gu R Q, Yu L J et al 2016 Polym. Chem. 7 5039CrossRefGoogle Scholar
  8. 8.
    Wang M, Ma X, Yu J, Jia X, Han D, Zhou T et al 2015 Polym. Chem. 6 4424CrossRefGoogle Scholar
  9. 9.
    Zahlou A, Sadiki Y, Bejjit L, Haddad M, Hamidi M and Bouachrine M 2014 J. Mater. Environ. Sci. 5 532Google Scholar
  10. 10.
    Sathiyan G, Sivakumar E K T, Ganesamoorthy R, Thangamuthu R and Sakthivel P 2016 Tetrahedron Lett. 57 243CrossRefGoogle Scholar
  11. 11.
    Al Mousawi A, Garra P, Dumur F, Bui T T, Goubard F, Toufaily J et al 2017 Molecules 22 1CrossRefGoogle Scholar
  12. 12.
    Al Mousawi A, Dumur F, Garra P, Toufaily J, Hamieh T, Graff B et al 2017 Macromolecules 50 2747CrossRefGoogle Scholar
  13. 13.
    Zhang J, Campolo D, Dumur F, Xiao P, Gigmes D, Fouassier J P et al 2016 Polym. Bull. 73 493CrossRefGoogle Scholar
  14. 14.
    Li G L, Liu J Q, Zhao B D and Wang T 2013 Spectrochim. Acta A Mol. Biomol. Spectrosc. 104 287Google Scholar
  15. 15.
    Bourass M, Touimi B A, Benzakour M, Mcharfi M, Jhilal F, Serein S F et al 2017 J. Saudi Chem. Soc. 21 563CrossRefGoogle Scholar
  16. 16.
    Madkour L H, Kaya S, Kaya C and Guo L 2016 J. Taiwan Inst. Chem. Eng. 68 461CrossRefGoogle Scholar
  17. 17.
    Stalindurai K, Gokula K K, Nagarajan E R and Ramalingan C 2017 J. Mol. Struct. 1130 633CrossRefGoogle Scholar
  18. 18.
    Shao J, Huang Y and Fan Q 2014 Polym. Chem. 5 4195CrossRefGoogle Scholar
  19. 19.
    Sipani V and Scranton A B 2004 Encycl. Polym. Sci. Technol. (New York: John Wiley & Sons, Inc.)Google Scholar
  20. 20.
    Tucker S H 1926 J. Chem. Soc. 129 546CrossRefGoogle Scholar
  21. 21.
    Kumchoo T, Promarak V, Sudyoadsuk T, Sukwattanasinitt M and Rashatasakhon P 2010 Chem. – Asian J. 5 2162CrossRefGoogle Scholar
  22. 22.
    Kato S I, Noguchi H, Kobayashi A, Yoshihara T, Tobita S and Nakamura Y 2012 J. Org. Chem. 77 9120CrossRefGoogle Scholar
  23. 23.
    Chao P, Gu R, Ma X, Wang T and Zhao Y 2016 Polym. Chem. 7 5147CrossRefGoogle Scholar
  24. 24.
    Stansbury J W and Dickens S H 2001 Dent. Mater. 17 71CrossRefGoogle Scholar
  25. 25.
    Jiang B and Huang Y D 2008 Composites Part A 39 712CrossRefGoogle Scholar
  26. 26.
    Abro H A, Zhou T, Han W, Xue T and Wang T 2017 RSC Adv. 7 55382CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  • Hussain Ahmed Abro
    • 1
    • 2
  • Baodong Zhao
    • 2
  • Weixiang Han
    • 2
  • Xiaoyu Ma
    • 2
  • Tao Wang
    • 1
    • 2
    Email author
  1. 1.State Key Laboratory of Chemical Resource Engineering, College of ScienceBeijing University of Chemical TechnologyBeijingPeople’s Republic of China
  2. 2.Department of Organic Chemistry, College of ScienceBeijing University of Chemical TechnologyBeijingPeople’s Republic of China

Personalised recommendations