Advertisement

Bulletin of Materials Science

, 41:143 | Cite as

Ammonolysed LiNi\(_{0.8}\hbox {Co}_{0.15}\hbox {Al}_{0.05}\hbox {O}_{2}\) as a cathode material for Li-ion batteries with improved rate capability

  • Sukeun YoonEmail author
Article
  • 24 Downloads

Abstract

In this work, ammonolysed \(\hbox {LiNi}_{0.8} \hbox {Co}_{0.15}\hbox {Al}_{0.05}\hbox {O}_{2}\) (NCA) prepared by co-precipitation and subsequent ammonolysis was investigated as a cathode material for Li-ion batteries with enhanced rate capability. Detailed structural and morphological property characterization demonstrated that ammonolysis results in the incorporation of a small amount of nitrogen into the surface layer of the afore-mentioned material. The electrochemical performances of NCA electrodes were measured by galvanostatic charging–discharging of the corresponding Li-ion cells, revealing that ammonolysed NCA exhibited higher capacity and rate capability than those of the pristine sample, i.e., after 20 cycles, the discharge capacity of the former equalled 176 mA h g\(^{-1}\) at a current density of 18.4 mA g\(^{-1}\), remaining as high as 107 mA h g\(^{-1}\) at a high current density of 1840 mA g\(^{-1}\). This improved performance was ascribed to ammonolysis-induced surface changes, which reduced cell polarization during cycling and enhanced the electrochemical stability and reaction kinetics of NCA electrodes.

Keywords

Li-ion battery \(\hbox {LiNi}_{0.8}\hbox {Co}_{0.15}\hbox {Al}_{0.05}\hbox {O}_{2}\) ammonolysis 

Notes

Acknowledgements

This research was supported by the Ministry of Trade, Industry and Energy (MOTIE), Korea Institute for Advancement of Technology (KIAT), through the Encouragement Program for the Industries of Economic Cooperation Region (No. 10067294), Korea Evaluation Institute of Industrial Technology (KEIT, No. 10067294) and the National Research Foundation of Korea (NRF, No. 2018R1C1B6004689).

References

  1. 1.
    Dunn B, Kamath H and Tarascon J M 2011 Science 334 928CrossRefGoogle Scholar
  2. 2.
    Polle B G, Staffell I and Shang J L 2012 Electrochim. Acta 84 235CrossRefGoogle Scholar
  3. 3.
    Tebbe J L, Holder A M and Musgrave C B 2015 ACS Appl. Mater. Interfaces 7 24265CrossRefGoogle Scholar
  4. 4.
    Kang K S, Choi S, Song J, Woo S G, Jo Y N, Choi J et al 2014 J. Power Sources 253 48CrossRefGoogle Scholar
  5. 5.
    Wu F, Tian J, Su Y, Wang J, Zhang C, Bao L et al 2015 ACS Appl. Mater. Interfaces 7 7702CrossRefGoogle Scholar
  6. 6.
    Manthiram A, Knight J C, Myung S T, Oh S M and Sun Y K 2016 Adv. Energy Mater. 6 1501010CrossRefGoogle Scholar
  7. 7.
    Liu H, Zhang Z, Gong Z and Yang Y 2004 Solid State Ion. 166 317CrossRefGoogle Scholar
  8. 8.
    Li C, Zhang H P, Fu L J, Liu H, Wu Y P, Rahm E et al 2006 Electrochim. Acta 51 3872CrossRefGoogle Scholar
  9. 9.
    Lee S H, Yoon C S, Amine K and Sun Y K 2013 J. Power Sources 234 201CrossRefGoogle Scholar
  10. 10.
    Liu W, Hu G, Du K, Peng Z and Cao Y 2013 Surf. Coat. Technol. 216 267Google Scholar
  11. 11.
    Song B, Li W, Oh S M and Manthiram A 2017 ACS Appl. Mater. Interfaces 9 9718CrossRefGoogle Scholar
  12. 12.
    Liu Q, Du K, Guo H, Peng Z D, Cao Y B and Hu G R 2013 Electrochim. Acta 90 350CrossRefGoogle Scholar
  13. 13.
    Huang B, Lin X, Wang Z, Guo H and Xiong X 2014 Ceram. Int. 40 13223CrossRefGoogle Scholar
  14. 14.
    Li X, Kang F, Shen W and Bai X 2007 Electrochim. Acta 53 1761CrossRefGoogle Scholar
  15. 15.
    Zhu L, Liu Y, Wu W, Wu X, Tang W and Wu Y 2015 J. Mater. Chem. A 3 15156CrossRefGoogle Scholar
  16. 16.
    Zhang H Z, Qiao Q Q, Li G R, Ye S H and Gao X P 2012 J. Mater. Chem. 22 13104CrossRefGoogle Scholar
  17. 17.
    Li B, Li C, Cao Z, Wang J and Zhao J 2016 RSC Adv. 6 31014CrossRefGoogle Scholar
  18. 18.
    Erickson E M, Sclar H, Schipper F, Liu J, Tian R, Ghanty C et al 2017 Adv. Energy Mater. 7 1700708Google Scholar
  19. 19.
    Son J T and Kim H G 2005 J. Power Sources 147 220CrossRefGoogle Scholar
  20. 20.
    Zhuang G V, Chen G, Shim J, Song X, Ross P N and Richardson T J 2004 J. Power Sources 134 293CrossRefGoogle Scholar
  21. 21.
    Chen Y, Li P, Zhao S, Zhuang Y, Zhao S, Zhou Q et al 2017 RSC Adv. 7 29233CrossRefGoogle Scholar
  22. 22.
    Choi W and Manthiram A 2007 J. Electrochem. Soc. 154 A792CrossRefGoogle Scholar
  23. 23.
    Wu Y and Manthiram A 2009 Solid State Ion. 180 50CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Division of Advanced Materials Engineering and Institute for Rare MetalsKongju National UniversityChungnamRepublic of Korea

Personalised recommendations