Bulletin of Materials Science

, 41:164 | Cite as

Investigation of the influence of Br- and As-doped silica single-wall nanotubes: Hartree–Fock method

  • Abdel-Baset H MekkyEmail author


Synthesis of silica single-wall nanotubes was reported based on single-membered ring (single unit cell) with the element As. These results are supported by performing the Hartree–Fock/6-311G method. The electronic structure, optical band gaps, hardness (\(\eta \)) and softness (S) are discussed. No difference in the computed bond length and angle of doped silica was found. Doping of As and Br atoms leads to a decrease in the energy gap of pure silica. This will make the silica doped with Br and As molecules not require more energy to be excited.


Silica nanotubes HF method Gaussian model electronic and structural properties optical band gaps hardness 


  1. 1.
    Cui Y and Lieber C M 2001 Science  291 851CrossRefGoogle Scholar
  2. 2.
    Delley B and Steigmeier E F 1995 Appl. Phys. Lett. 67 2370CrossRefGoogle Scholar
  3. 3.
    Zhao Y and Yakobson B I 2003 Phys. Rev. Lett. 91 035501CrossRefGoogle Scholar
  4. 4.
    Leu P W, Shan B and Cho K 2006 Phys. Rev. B  73 195320CrossRefGoogle Scholar
  5. 5.
    Vo T, Williamson A J and Galli G 2006 Phys. Rev. B  74 045116CrossRefGoogle Scholar
  6. 6.
    Singh A K, Kumar V, Note R and Kawazoe Y 2006 Nano Lett. 6 920CrossRefGoogle Scholar
  7. 7.
    Rurali R, Aradi B, Frauenheim T and Gali A 2007 Phys. Rev. B  76 113303CrossRefGoogle Scholar
  8. 8.
    Cui Y, Zhong Z, Wang D, Wang W U and Lieber C M 2003 Nano Lett. 3 149CrossRefGoogle Scholar
  9. 9.
    Duan X, Huang Y, Cui Y, Wang J and Lieber C M 2001 Nature  409 66CrossRefGoogle Scholar
  10. 10.
    Huang Y, Duan X, Cui Y, Lauhon L J, Kim K H and Lieber C M 2001 Science  294 1313CrossRefGoogle Scholar
  11. 11.
    Tans S J, Verschueren A R M and Dekker C 1998 Nature  393 49CrossRefGoogle Scholar
  12. 12.
    Martel R, Schmidt T, Shea H R, Hertel T and Avouris P 1998 Appl. Phys. Lett. 73 2447CrossRefGoogle Scholar
  13. 13.
    Wind S J, Appenzeller J, Martel R, Derycke V and Avouris P 2002 Appl. Phys. Lett. 80 3817CrossRefGoogle Scholar
  14. 14.
    Derycke V, Martel R, Appenzeller J and Avouris P 2001 Nano Lett. 1 453CrossRefGoogle Scholar
  15. 15.
    Martel R, Derycke V, Lavoie C, Appenzeller J, Chan K K, Tersoff J et al 2001 Phys. Rev. Lett. 87 256805CrossRefGoogle Scholar
  16. 16.
    Cui Y Q, Wei H, Park H K and Lieber C M 2001 Science  293 17CrossRefGoogle Scholar
  17. 17.
    Hahm J and Lieber C M 2003 Nano Lett. 4 51CrossRefGoogle Scholar
  18. 18.
    Gao Z, Agarwal A, Trigg A D, Singh N, Fang C, Tung C-H et al 2007 Anal. Chem. 79 3291CrossRefGoogle Scholar
  19. 19.
    Patolsky F, Zheng G and Lieber C M 2006 Nat. Protoc. 1 1711CrossRefGoogle Scholar
  20. 20.
    Cheng M M-C, Cuda G, Bunimovich Y L, Gaspari M, Heath J R, Hill H D et al 2006 Curr. Opin. Chem. Biol. 10 11CrossRefGoogle Scholar
  21. 21.
    Kuang Q, Lao C, Wang Z L, Xie Z and Zheng L 2007 J. Am. Chem. Soc. 129 6070CrossRefGoogle Scholar
  22. 22.
    Li Y, Qian F, Xiang J and Lieber C M 2006 Mater. Today  9 18CrossRefGoogle Scholar
  23. 23.
    Star A, Lu Y, Bradley K and Grüner G 2004 Nano Lett. 4 1587CrossRefGoogle Scholar
  24. 24.
    Zhong Z, Qian F, Wang D and Lieber C M 2003 Nano Lett. 3 343CrossRefGoogle Scholar
  25. 25.
    Wong H 2002 Microelectron. Reliab. 42 317CrossRefGoogle Scholar
  26. 26.
    Read A J, Needs R J, Nash K J, Canham L T, Calcott P D J and Qteish A 1992 Phys. Rev. Lett. 69 1232CrossRefGoogle Scholar
  27. 27.
    Ohno T, Shiraishi K and Ogawa T 1992 Phys. Rev. Lett. 69 2400CrossRefGoogle Scholar
  28. 28.
    Hybertsen M S and Needels M 1993 Phys. Rev. B  48 4608CrossRefGoogle Scholar
  29. 29.
    Aradi B, Ramos L E, Deák P, Köhler T, Bechstedt F, Zhang R Q et al 2007 Phys. Rev. B  76 35305CrossRefGoogle Scholar
  30. 30.
    Singh A K, Kumar V, Note R and Kawazoe Y 2005 Nano Lett. 5 2302CrossRefGoogle Scholar
  31. 31.
    Rurali R and Lorente N 2005 Phys. Rev. Lett. 94 026805CrossRefGoogle Scholar
  32. 32.
    Zhao X M, Wei C, Yang L and Chou M Y 2004 Phys. Rev. Lett. 92 23Google Scholar
  33. 33.
    Scheel H, Reich S and Thomsen C 2005 Phys. Status Solidi (b)  242 2474CrossRefGoogle Scholar
  34. 34.
    Zhang R Q, Lifshitz Y, Ma D D D, Zhao Y L, Frauenheim T, Lee S T et al 2005 J. Chem. Phys. 123 144703CrossRefGoogle Scholar
  35. 35.
    Ng M-F, Zhou L, Yang S-W, Sim L Y, Tan V B C and Wu P 2007 Phys. Rev. B  76 155435CrossRefGoogle Scholar
  36. 36.
    Nolan M, O’Callaghan S, Fagas G, Greer J C and Frauenheim T 2006 Nano Lett. 7 34CrossRefGoogle Scholar
  37. 37.
    Delerue C, Allan G and Lannoo M 1993 Phys. Rev. B  48 11024CrossRefGoogle Scholar
  38. 38.
    Fagan B, Baierle R J, Mota R, Silva J R and Fazzio A 1994 Phys. Rev. B  61 9994CrossRefGoogle Scholar
  39. 39.
    Yang X and Ni J 2005 Phys. Rev. B  72 195426CrossRefGoogle Scholar
  40. 40.
    Barnard A S and Russo S P 2003 J. Phys. Chem. 107 7577CrossRefGoogle Scholar
  41. 41.
    Zhang R Q, Lee H-L, Li W-K and Teo B K 2005 J. Phys. Chem. 109 8605CrossRefGoogle Scholar
  42. 42.
    Zhang M, Kan Y H, Zang Q J, Su Z M and Wang R S 2003 Chem. Phys. Lett. 379 81CrossRefGoogle Scholar
  43. 43.
    Seifert G, Kohler T, Urbassek H M, Hernandez E and Frauenheim T 2001 Phys. Rev. B  63 193409CrossRefGoogle Scholar
  44. 44.
    Pour N, Altus E, Basch H and Hoz S 2010 J. Phys. Chem. C  114 10386CrossRefGoogle Scholar
  45. 45.
    Pour N, Altus E, Basch H and Hoz S 2009 J. Phys. Chem. C  113 3467CrossRefGoogle Scholar
  46. 46.
    Bai J, Zeng X C, Tanaka H and Zeng J Y 2004 Proc. Natl. Acad. Sci. 101 2665CrossRefGoogle Scholar
  47. 47.
    Wang H, Wang X, Wang H, Wang L and Liu A 2007 J. Mol. Model  13 1147Google Scholar
  48. 48.
    Sastri V S and Perumareddi J R 1997 Corrosion  53 617CrossRefGoogle Scholar
  49. 49.
    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R et al 2004 Gaussian 03 (Revision D 01) Gaussian Inc., Wallingford, CTGoogle Scholar
  50. 50.
    Diener M D and Alford J M 1998 Nature  393 668CrossRefGoogle Scholar
  51. 51.
    Moran D, Stahl F, Bettinger H F, Schaefer III H F and Schleyer P V R 2003 J. Am. Chem. Soc. 125 6746CrossRefGoogle Scholar
  52. 52.
    Yang S H, Pettiette C L, Conceicao J, Cheshnovsky O and Smalley R E 1987 Chem. Phys. Lett. 139 233CrossRefGoogle Scholar
  53. 53.
    Handschuh H, Ganteför G, Kessler B, Bechthold P S and Eberhardt W 1995 Phys. Rev. Lett. 74 1095CrossRefGoogle Scholar
  54. 54.
    Zele Y M et al 2012 New J. Phys. 14 113029CrossRefGoogle Scholar
  55. 55.
    Zhang S-L et al 2010 Chin. J. Chem. Phys. 23 497CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Faculty of Science and Arts El-MoznebQassim UniversityEl-MoznebKingdom of Saudi Arabia
  2. 2.High Institute of Engineering and TechnologyBuhairaEgypt

Personalised recommendations