Advertisement

Bulletin of Materials Science

, 41:139 | Cite as

Comparative study of structural, optical and magnetic properties of Fe–Pt, Fe–Cu and Fe–Pd-codoped \(\hbox {WO}_{3}\) nanocrystalline ceramics: effect of annealing in hydrogen atmosphere

  • A A DakhelEmail author
Article
  • 40 Downloads

Abstract

Tungsten oxide (W-oxide) nanoparticles doped and codoped with different transition-metal (TM) ions (Fe, Pt, Cu and Pd) were synthesized by hydrochloric acid-assisted precipitation. The synthesized powders were characterized by X-ray diffraction (XRD), diffuse reflectance spectroscopy (DRS) and magnetic characterization methods. The room temperature (RT) monoclinic (P21/n) structure founded for pristine \(\hbox {WO}_{3}\) nanopowder was converted into orthorhombic (Pbam) structure by Fe-doping, while codoping, (Fe–Pt) and (Fe–Cu) preserved the P21/n space group (SG) structure. It was found that the hydrogenation of the synthesized doped-samples corroded the crystallites without changing the crystalline SG structure. Moreover, controllable room temperature ferromagnetic (RT-FM) properties were created by hydrogenation of the codoped W-oxide samples. The oxygen vacancies-mediated ferromagnetic (FM) interaction could be responsible for the observed FM. The relative highest RT-FM energy was created with hydrogenated Fe–Pd codoped W-oxide. Therefore, Fe–Pd-codoped W-oxide nanopowder could be considered as a potential candidate for many applications involving partial FM properties, such as catalysts and optical phosphors.

Graphical Abstract

Keywords

TM-doped \(\hbox {WO}_{3}\) created ferromagnetism hydrogen treatment 

References

  1. 1.
    Zhao P 2015 PhD thesis (Germany: University of Bremen)Google Scholar
  2. 2.
    El-Nouby M S 2014 PhD thesis (Osaka, Japan: Osaka University, OUKA)Google Scholar
  3. 3.
    Migas D B, Shaposhnikov V L and Borisenko V E 2010 J. Appl. Phys. 108 093714CrossRefGoogle Scholar
  4. 4.
    Yan H, Zhang X, Zhou S, Xie X, Luo Y and Yu Y 2011 J. Alloys Compd. 509 L232CrossRefGoogle Scholar
  5. 5.
    Lee K, Seo W S and Park J T 2003 J. Am. Chem. Soc. 125 3408CrossRefGoogle Scholar
  6. 6.
    Lee S, Deshpande R, Parilla P A, Jones K M, To B, Mahan A H et al 2006 Adv. Mater. 18 763CrossRefGoogle Scholar
  7. 7.
    Yamamoto S, Takano K, Inouye A and Yoshikawa M 2007 Nucl. Instrum. Meth. Phys. Res. Sect. B 262 29CrossRefGoogle Scholar
  8. 8.
    Reyes L F, Hoel A, Saukko S, Hessler P, Lantto V and Granqvist C G 2006 Sens. Actuators B 117 128CrossRefGoogle Scholar
  9. 9.
    Khatko V, Vallejos S, Calderer J, Gracia I, Cane C, Llobet E et al 2009 Sens. Actuators B 140 356CrossRefGoogle Scholar
  10. 10.
    Castro-Hurtadoa I, Tavera T, Yurrita P, Perez N, Rodriguez A, Mandayo G G et al 2013 Appl. Surf. Sci. 276 229CrossRefGoogle Scholar
  11. 11.
    Therese H A, Li J, Kolb U and Tremel W 2005 Solid State Sci. 7 67CrossRefGoogle Scholar
  12. 12.
    Djaoued Y, Priya S and Balaji S 2008 J. Non-Cryst. Solids 354 673CrossRefGoogle Scholar
  13. 13.
    Wang G, Ji Y, Huang X, Yang X, Gouma P and Dudley M 2006 J. Phys. Chem. B 110 23777CrossRefGoogle Scholar
  14. 14.
    Yang B, Li H, Blackford M and Luca V 2006 Curr. Appl. Phys. 6 436CrossRefGoogle Scholar
  15. 15.
    Hariharan V, Aroulmoji V, Prabakaran K, Gnanavel B, Parthibavarman M, Sathyapriya R et al 2016 J. Alloys Compd. 689 41CrossRefGoogle Scholar
  16. 16.
    Kaminski A and Sarma S D 2002 Phys. Rev. Lett. 88 247202CrossRefGoogle Scholar
  17. 17.
    Wolff P A, Bhatt R N and Durst A C 1996 J. Appl. Phys. 79 5196CrossRefGoogle Scholar
  18. 18.
    Lewis E A, Le D, Murphy C J, Jewell A D, Mattewra M F G, Liriano M L et al 2012 J. Phys. Chem. C 116 25868CrossRefGoogle Scholar
  19. 19.
    Pozzo M and Alfe D 2009 Int. J. Hydrog. Energy 34 1922CrossRefGoogle Scholar
  20. 20.
    Wua E, Li W and Li J 2012 Int. J. Hydrog. Energy 37 1509Google Scholar
  21. 21.
    Zaluska A, Zaluski L and Strom-Olsen J O 1999 J. Alloys Compd. 288 217CrossRefGoogle Scholar
  22. 22.
    Dakhel A A 2017 J. Supercond. Novel. Magn. Published online 24 November,  https://doi.org/10.1007/s10948-017-4430-9
  23. 23.
    Luca L Introduction to diffraction and the Rietveld method (Corso: Laboratorio Scienza e Tecnologia dei Materiali) www.ing.unitn.it/~luttero/laboratoriomateriali/RietveldRefinements.pdf
  24. 24.
    Tanisaki S 1960 J. Phys. Soc. Jpn. 15 573CrossRefGoogle Scholar
  25. 25.
    Woodward P M, Sleight A W and Vogt T 1995 J. Phys. Chem. Solids 56 1305CrossRefGoogle Scholar
  26. 26.
    Barabanenkov Yu A, Zakharov N D, Zibrov I P, Filonenko V P, Werner P, Popov A I et al 1993 Acta Cryst. B 49 169CrossRefGoogle Scholar
  27. 27.
    Shannon R D 1976 Acta Crystallogr. A 32 751Google Scholar
  28. 28.
    Kittel C 1996 Introduction to solid state physics (NY, USA: John Wiley & Sons)Google Scholar
  29. 29.
    Torrent J and Barron V 2002 Encyclopedia of surface and colloid science (NY, USA: Marcel Dekker Inc.)Google Scholar
  30. 30.
    Yaacob M H, Breedon M, Kalantar-Zadeh K and Wlodarski W 2009 Sens. Actuators B 137 115CrossRefGoogle Scholar
  31. 31.
    Manfang M, Xinzhou M, Hua Z, Mao Y, Tao L, Shanming K et al 2017 J. Alloys Compd. 722 913Google Scholar
  32. 32.
    Matteo G, Carlo E B, Lucia C, Giovanni O, Cristiana D V and Gianfranco P 2015 J. Chem. Phys. 143 134702Google Scholar
  33. 33.
    Johansson M B, Baldissera G, Valyukh I, Persson C, Arwin H, Niklasson G et al 2013 J. Phys.: Condens. Matter 25 205502Google Scholar
  34. 34.
    Tauc J and Abeles F (eds) 1969 Optical properties of solids (Amsterdam: North Holland Publishing Co.)Google Scholar
  35. 35.
    Cole B, Marsen B, Miller E, Yan Y, To B, Jones K et al 2008 J. Phys. Chem. C 112 5213CrossRefGoogle Scholar
  36. 36.
    Song H, Li Y, Lou Z, Xiao M, Hu L, Ye Z et al 2015 Appl. Catal. B 166–167 112Google Scholar
  37. 37.
    Aguir K, Lemire C and Lollman D B B 2002 Sens. Actuators B 84 1CrossRefGoogle Scholar
  38. 38.
    Wang H, Dong X, Peng S, Dong L and Wang Y 2012 J. Alloys Compd. 527 204Google Scholar
  39. 39.
    Polaczek A, Pekala M and Obuszko Z 1994 J. Phys. Condens. Matter 6 7909CrossRefGoogle Scholar
  40. 40.
    The University of the West Indies, Mona, Jamaica, Dept. of Chemistry, available: http://wwwchem.uwimona.edu.jm/spectra/MagMom.html (accessed on 8 September 2017)
  41. 41.
    Cheng W and Ma X 2009 J. Phys.: Conf. Ser. 152 012039Google Scholar
  42. 42.
    Yeganeh M, Shahtahmasebi N, Kompany A, Karimipour M, Razavi F, Nasralla N H S et al 2017 Physica B: Condens. Matter 511 89CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Department of Physics, College of ScienceUniversity of BahrainZallaqKingdom of Bahrain

Personalised recommendations