Bulletin of Materials Science

, 41:140 | Cite as

Metal-chelated cryogels for amyloglucosidase adsorption: application for continuous starch hydrolysis

  • Sinem Evli
  • Hande Orhan
  • Pelin Sözen Aktaş
  • Murat Uygun
  • Deniz Aktaş UygunEmail author


In the present work, a new metal-chelating platform was designed by using IDA as a chelating agent and Cu(II) as an affinity component for amyloglucosidase adsorption. Poly(AAm-GMA) cryogels were used as structural elements, while GMA monomer served reactive epoxy groups for IDA immobilization. Synthesized cryogels were characterized by FTIR, SEM and EDX studies. Pore diameter of the whole polymeric structure was 3–10 \(\upmu \hbox {m}\). Effects of medium pH, temperature, ionic strength along with amyloglucosidase concentration were also investigated for more effective amyloglucosidase adsorption and maximum adsorbed amount of amyloglucosidase was \(2.93\,\hbox {mg }\hbox {g}^{-1}\) cryogel by the optimum conditions. Reusability profile of the poly(AAm-GMA)-IDA-\(\hbox {Cu}^{2+}\) cryogels was also studied and it was found that the synthesized cryogels could be used repeatedly for many times without any significant decrease on their adsorption capacity. Also continuous hydrolysis of starch by using immobilized form of amyloglucosidase in a column system was studied.


Amyloglucosidase cryogel starch hydrolysis 


  1. 1.
    Porath J, Carlsson J, Olsson I and Belfrage G 1975 Nature 258 598CrossRefGoogle Scholar
  2. 2.
    Gupta M N, Jain S and Roy I 2002 Biotechnol. Prog. 18 78CrossRefGoogle Scholar
  3. 3.
    Ivanov A E, Galaev I Y, Kazakov S V and Mattiasson B 2001 J. Chromatogr. A 907 115CrossRefGoogle Scholar
  4. 4.
    Denizli A, Alkan M, Garipcan B, Özkara S and Pişkin E 2003 J. Chromatogr. B 795 93CrossRefGoogle Scholar
  5. 5.
    Yabutani T, Sumi H, Nakamura T, Akatsuki S and Thuy L T X 2012 Anal. Sci. 28 463CrossRefGoogle Scholar
  6. 6.
    Altıntaş E B, Yavuz H, Say R and Denizli A 2006 J. Biomater. Sci. Polym. Ed. 17 213CrossRefGoogle Scholar
  7. 7.
    Uygun D A, Şenay R H, Türkcan C, Akgöl S and Denizli A 2012 Appl. Biochem. Biotechnol. 168 1528CrossRefGoogle Scholar
  8. 8.
    Lin P-C, Lin S-C and Hsu W-H 2008 J. Chin. Inst. Chem. Eng. 39 389CrossRefGoogle Scholar
  9. 9.
    Lozinsky V I, Galaev I Y, Plieva F M, Savina I N, Jungvid H and Mattiasson B 2003 Trends Biotechnol. 21 445CrossRefGoogle Scholar
  10. 10.
    Uygun M, Akduman B, Ergönül B, Uygun D A, Akgöl S and Denizli A 2015 J. Biomater. Sci. Polym. Ed. 26 1112CrossRefGoogle Scholar
  11. 11.
    Bibi N S, Singh N K, D’souza R N, Aasim M and Fernández-Lahore M 2013 J. Chromatogr. A 1272 145CrossRefGoogle Scholar
  12. 12.
    Onnby L, Giorgi C, Plieva F M and Mattiasson B 2010 Biotechnol. Prog. 26 1295CrossRefGoogle Scholar
  13. 13.
    Efremenko E, Votchitseva Y, Plieva F, Galaev I and Mattiasson B 2006 Appl. Microbiol. Biotechnol. 70 558CrossRefGoogle Scholar
  14. 14.
    Kumar A, Bansal V, Andersson J, Roychoudhury P K and Mattiasson B 2006 J. Chromatogr. A 1103 35CrossRefGoogle Scholar
  15. 15.
    Reddy P S, Rani D J and Sulthana S 2011 J. Pure Appl. Microbiol. 5 167Google Scholar
  16. 16.
    James J A and Lee B H 1997 J. Food Biochem. 21 1CrossRefGoogle Scholar
  17. 17.
    Wang F, Guo C, Liu H-Z and Liu C-Z 2007 J. Mol. Catal. B 48 1CrossRefGoogle Scholar
  18. 18.
    Osman B, Kara A and Beşirli N 2011 J. Macromol. Sci. Part A 48 387CrossRefGoogle Scholar
  19. 19.
    Zhao G, Li Y, Wang J and Zhu H 2011 Appl. Microbiol. Biotechnol. 91 591CrossRefGoogle Scholar
  20. 20.
    Zhao G, Wang J, Li Y, Huang H and Chen X 2012 Biochem. Eng. J. 68 159CrossRefGoogle Scholar
  21. 21.
    Baydemir G, Derazshamshir A, Andaç M, Andaç C and Denizli A 2012 J. Appl. Polym. Sci. 126 575CrossRefGoogle Scholar
  22. 22.
    Torres R, Pessela B C C, Mateo C, Ortiz C, Fuentes M, Guisan J M et al 2004 Biotechnol. Progr. 20 1297CrossRefGoogle Scholar
  23. 23.
    Marin-Zamoraa M E, Rojas-Melgarejoa F, Garcia-Canovasb F and Garcia-Ruiz P A 2006 J. Biotechnol. 126 295CrossRefGoogle Scholar
  24. 24.
    Rebros M, Rosenberg M, Mlichova Z, Kristofikova L and Paluch M 2006 Enzyme Microb. Technol. 39 800CrossRefGoogle Scholar
  25. 25.
    Uygun D A, Uygun M, Akgöl S and Denizli A 2015 Mat. Sci. Eng. C 50 379CrossRefGoogle Scholar
  26. 26.
    Zhou X, Liu D, Zhong L and Yang B 2011 Anal. Bioanal. Chem. 401 1251CrossRefGoogle Scholar
  27. 27.
    Odabaşı M, Uzun L and Denizli A 2004 J. Appl. Polym. Sci93 2501CrossRefGoogle Scholar
  28. 28.
    Luo Q, Zou H, Xiao X, Gou Z, Kong L and Mao X 2001 J. Chromatogr. A 926 255CrossRefGoogle Scholar
  29. 29.
    Bernfeld P 1955 Methods in enzymology (New York: Academic) vol. IGoogle Scholar
  30. 30.
    Milosavic N, Prodanovic R, Jovanovic S and Vujcic Z 2007 Enzyme Microb. Technol. 40 1422CrossRefGoogle Scholar
  31. 31.
    Wee L L, Annuar M S M, Ibrahim S and Chisti Y 2011 Chem. Eng. Commun. 198 1339CrossRefGoogle Scholar
  32. 32.
    Altunbaş C, Uygun M, Uygun D A, Akgöl S and Denizli A 2013 Appl. Biochem. Biotechnol. 170 1909CrossRefGoogle Scholar
  33. 33.
    Arvidsson P, Plieva F M, Savina I N, Lozinsky V I, Fexby S, Bülow L et al 2002 J. Chromatogr. A 977 27CrossRefGoogle Scholar
  34. 34.
    Deraz S, Plieva F M, Galaev I Y, Karlsson E N and Mattiasson B 2007 Enzyme Microb. Technol. 40 786CrossRefGoogle Scholar
  35. 35.
    Yan C, Shen S, Yun J, Wang L, Yao K and Yao S J 2008 J. Sep. Sci. 31 3879CrossRefGoogle Scholar
  36. 36.
    Yun J, Shen S, Chen F and Yao K 2007 J. Chromatogr. B 860 57CrossRefGoogle Scholar
  37. 37.
    Arvidsson P, Plieva F M, Lozinsky V I, Galaev I Y and Mattiasson B 2003 J. Chromatogr. A 986 275CrossRefGoogle Scholar
  38. 38.
    Sun S, Tang Y, Fu Q, Liu Z, Guo L, Zhao Y et al 2012 Int. J. Biol. Macromol. 50 1002CrossRefGoogle Scholar
  39. 39.
    Plieva F M, Anderson J, Galaev I Y and Mattiasson B 2004 J. Sep. Sci. 27 828CrossRefGoogle Scholar
  40. 40.
    La Fuente J L, Canamero P F and Fernandez-Garcia M 2006 J. Polym. Sci. 44 1807CrossRefGoogle Scholar
  41. 41.
    Altıntaş E B, Türkmen D, Karakoç V and Denizli A 2011 Colloids Surf. B: Biointerfaces 85 235CrossRefGoogle Scholar
  42. 42.
    Bereli N, Şener G, Altıntaş E B, Yavuz H and Denizli A 2010 Mater. Sci. Eng. C 30 323CrossRefGoogle Scholar
  43. 43.
    Tishchenko G, Dybal J, Meszaroova J K, Sedlakova Z and Bleha M 2002 J. Chromatogr. A 954 115CrossRefGoogle Scholar
  44. 44.
    Svensson B, Pedersen T G, Svendsen I B, Sakai T and Ottesen M 1982 Carlsberg Res. Commun. 47 55CrossRefGoogle Scholar
  45. 45.
    Çimen D and Denizli A 2012 Colloids Surf. B: Biointerfaces 93 29CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  • Sinem Evli
    • 1
  • Hande Orhan
    • 1
  • Pelin Sözen Aktaş
    • 2
  • Murat Uygun
    • 1
    • 3
  • Deniz Aktaş Uygun
    • 1
    • 3
    Email author
  1. 1.Faculty of Science and Arts, Chemistry DivisionAdnan Menderes UniversityAydınTurkey
  2. 2.Faculty of Science and Arts, Chemistry DivisionCelal Bayar UniversityManisaTurkey
  3. 3.Nanotechnology Application and Research CenterAdnan Menderes UniversityAydınTurkey

Personalised recommendations