Advertisement

Bulletin of Materials Science

, 41:145 | Cite as

Effect of gel polymer electrolyte based on polyvinyl alcohol/polyethylene oxide blend and sodium salts on the performance of solid-state supercapacitor

  • HOP TRAN THI THANH
  • PHUOC ANH LE
  • MAI DANG THI
  • TUAN LE QUANG
  • TUNG NGO TRINH
Article
  • 15 Downloads

Abstract

In this work, the effect of gel polymer electrolytes (GPE) containing polyvinyl alcohol/polyethylene oxide (90/10, wt%) blend and different contents of sodium salt mixture (sodium acetate \((\hbox {CH}_{3}{\mathrm{COONa)}}\)/sodium sulphate \(\hbox {(Na}_{2}\hbox {SO}_{4}) = 50/50~\hbox {wt}\%\)) on the performance of solid-state supercapacitor was investigated. The active electrode of the solid-state supercapacitor was made from graphene nanoplatelets and carbon black. The results indicate that the sodium salt mixtures were easily mixed in polymer blend gel to make excellent GPE with large concentration of ionic liquid. At the sodium salt mixture content of 30%, the solid-state supercapacitor showed the best performance of electrode-specific capacitance of \(93.768 \hbox { F g}^{-1}\) at current density of \(1\hbox { A g}^{-1}\), energy density of \(3.25\hbox { Wh kg}^{-1}\) and power density of \(586.166 \hbox { W kg}^{-1}\). These results highly recommend the good potential of GPE for developing solid-state supercapacitor in the future.

Keywords

Solid-state supercapacitor gel polymer electrolytes polymer blend sodium salt 

Notes

Acknowledgements

We acknowledge the financial support from the Institute of Chemistry, Vietnam Academy of Science and Technology (VHH.2017.1.02).

References

  1. 1.
    Xihong L, Minghao Y, Gongming W, Yexiang T and Yat L 2014 Energy Environ. Sci. 7 2160CrossRefGoogle Scholar
  2. 2.
    Cheng Z, Yida D, Wenbin H, Jinli Q, Lei Z and Jiujun Z 2015 Chem. Soc. Rev. 44 7484CrossRefGoogle Scholar
  3. 3.
    Choudhury N A, Sampath S and Shukla A K 2009 Energy Environ. Sci. 2 55CrossRefGoogle Scholar
  4. 4.
    Béguin F, Presser V, Balducci A and Frackowiak E 2014 Adv. Mater. 26 2219CrossRefGoogle Scholar
  5. 5.
    Sharma P and Bhatti T S 2010 Energy Convers. Manag. 51 2901CrossRefGoogle Scholar
  6. 6.
    Patrice S and Yury G 2008 Nat. Mat. 7 845CrossRefGoogle Scholar
  7. 7.
    Gongming W, Xihong L, Yichuan L, Teng Z, Hanyu W, Yexiang T et al 2012 ACS Nano 11 10296Google Scholar
  8. 8.
    Jagadage A D, Kumbhar V S, Dhawale D S and Lokhande C D 2013 Electrochim. Acta 98 32CrossRefGoogle Scholar
  9. 9.
    Senthilkumar S T, Kalai Selvan R, Ponpandian N and Melo J S 2012 RSC Adv. 2 8937CrossRefGoogle Scholar
  10. 10.
    Xing Z, Liangliang W, Jing P, Pengfei C, Xiaosheng C, Jiuqiang L et al 2015 Adv. Mater. Interface 2 15Google Scholar
  11. 11.
    Haijun Y, Leqing F, Jihuai W, Youzhen L, Miaoliang H, Jianming L et al 2012 RSC Adv. 2 6736CrossRefGoogle Scholar
  12. 12.
    Meng C, Liu C, Chen L, Hu C and Fan S 2010 Nano Lett. 10 4025CrossRefGoogle Scholar
  13. 13.
    Boschin A and Johansson P 2015 Electrochim. Acta 175 124CrossRefGoogle Scholar
  14. 14.
    Bhargav P B, Mohan V M, Sharma A L and Rao V V R N 2009 Curr. Appl. Phys. 9 165CrossRefGoogle Scholar
  15. 15.
    Kumar K K, Ravi M, Pavani Y, Bhavani S, Sharma A K and Rao V V R N 2014 J. Memb. Sci. 454 200CrossRefGoogle Scholar
  16. 16.
    Wu C H, Wang C H, Lee M T and Chang J K 2012 J. Mater. Chem. 22 21466CrossRefGoogle Scholar
  17. 17.
    Zhu Z, Jiang H, Guo S, Cheng Q, Hu Y and Li C 2015 Sci. Rep. 5 15936CrossRefGoogle Scholar
  18. 18.
    Boris D, Volker P, Min H, Maria R L, Majid B and Yurg G 2013 ChemSusChem. 6 1CrossRefGoogle Scholar
  19. 19.
    Pandey G P, Kumar Y and Hashmi S A 2010 Ind. J. Chem. 49A 743Google Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  • HOP TRAN THI THANH
    • 1
  • PHUOC ANH LE
    • 1
  • MAI DANG THI
    • 1
  • TUAN LE QUANG
    • 1
  • TUNG NGO TRINH
    • 1
  1. 1.Institute of ChemistryVietnam Academy of Science and Technology (VAST)HanoiVietnam

Personalised recommendations