Advertisement

Bulletin of Materials Science

, 41:142 | Cite as

Composite of AuNPs@SiO\(_{2}\)NPs@[(NIPAM)-\({\varvec{b}}\)-(Ala)] and its activity on leukemia cells

  • Chander Amgoth
  • Mohan Lakavathu
  • D S D Suman Joshi
Article
  • 6 Downloads

Abstract

Synthesis and characterization of thermo-sensitive block copolymer of N-isopropyl acryl amide-b-Alanine [(NIPAM)-b-(Alanine)] thin film and its doping with (AuNPs)–(\(\hbox {SiO}_{2}\hbox {NPs}\)), (gold and silica nanoparticles) were reported. Further, composite effect on K562 (leukemia) cells was examined based on in vitro cell-based studies. The synthesis of \(\hbox {SiO}_{2} \hbox {NPs}\) was followed through facile Stober’s sol–gel synthesis methods. The individual morphology of [(NIPAM)-b-(Alanine)] thin film, AuNPs and \(\hbox {SiO}_{2 }\)NPs including [(NIPAM)-b-(Alanine)]@(Au)-(\(\hbox {SiO}_{2} \hbox {NPs}\)) composite was confirmed by using TEM instrumentation. [(NIPAM)-b-(Alanine)] thin film was embedded with gold and silica nanoparticles followed by the sonication. The average size of AuNPs is 16 nm and for \(\hbox {SiO}_{2}\hbox {NPs}\), it is \({\sim }\)368 nm (in diameter). Synthesized composite [(NIPAM)-b-(Alanine)]@(Au)@(\(\hbox {SiO}_{2}\hbox {NPs}\)) is biocompatible for mankind use. However, composite used to examine the inhibitory activity on K562 cells and it shows \(\sim \)78% inhibition, which is significant value for 24 h treatment under humidified atmospheric conditions.

Keywords

Composite gold nanoparticles silica nanoparticles cell inhibition [(NIPAM)-b-(Alanine)] 

Notes

Acknowledgements

We would like to acknowledge University Grants Commission for financial assistance under the Rajiv Gandhi National Fellowship Scheme.

Supplementary material

12034_2018_1657_MOESM1_ESM.docx (3.6 mb)
Supplementary material 1 (docx 3643 KB)

References

  1. 1.
    Anamika M, Sanjukta C, Prashant M R and Geeta W 2012 Adv. Mater. Lett. 3 519CrossRefGoogle Scholar
  2. 2.
    Krishnan R, Arumugam V and Vasaviah S K 2015 J. Nanomed. Nanotechnol. 6 285Google Scholar
  3. 3.
    Sun T, Zhang Y S, Pang B, Hyun D C, Yang M and Xia Y 2014 Angew. Chem. Int. Ed. Engl. 53 12320Google Scholar
  4. 4.
    Wei G, Yiqin S, Zuo L, Wei F and Tianxi L 2016 Mater. Today Chem. 1 32Google Scholar
  5. 5.
    Liu W, Wen S, Shen M and Shi X 2014 New J. Chem. 38 3917CrossRefGoogle Scholar
  6. 6.
    Brajesh K, Kumari S, Luis C and Alexis D 2015 Asian Pac. J. Trop. Biomed. 5 192CrossRefGoogle Scholar
  7. 7.
    Nadia H M, Mady A I, Moustfa W and Abdelfattah A 2014 Asian Pac. J. Trop. Biomed. 4 876CrossRefGoogle Scholar
  8. 8.
    Giovanni B 2016 Asian Pac. J. Trop. Biomed. 6 353CrossRefGoogle Scholar
  9. 9.
    Liudmyla A K, Mykola T K, Oleg O L, Volodymyr F O, Kostyantyn A P and Olena J 2017 Adv. Mater. Lett. 8 336CrossRefGoogle Scholar
  10. 10.
    Liang Z, Li X, Xie Y and Liu S 2014 Biomed. Mater. 9 1CrossRefGoogle Scholar
  11. 11.
    Morones J R, Elechiguerra J L, Camacho A, Holt K, Kouri J B, Ramirez J T et al 2005 Nanotechnology 16 2346CrossRefGoogle Scholar
  12. 12.
    Christian A, Veronika W, Christoph B and Thomas B 2014 Chem. Mater. 26 435CrossRefGoogle Scholar
  13. 13.
    Lucas M D E and Michael A R M 2011 Eur. Polym. J. 47 837CrossRefGoogle Scholar
  14. 14.
    Zhang Q, Large N and Wang H 2014 ACS Appl. Mater. Interfaces 6 17255CrossRefGoogle Scholar
  15. 15.
    Zhang Q, Large N, Nordlander P and Wang H 2014 J. Phys. Chem. Lett. 5 370CrossRefGoogle Scholar
  16. 16.
    Lili L, Zhang X and Chaudhuri J 2014 Mater. Res. Express 1 1Google Scholar
  17. 17.
    Yang Y, Wang W, Chen T and Chen Z R 2014 ACS Appl. Mater. Interfaces 62 1468Google Scholar
  18. 18.
    Perassi E M, Hrelescu C, Wisnet A, Doblinger M, Scheu C, Jackel F et al 2014 ACS Nano 8 4395CrossRefGoogle Scholar
  19. 19.
    Rai M, Yadav A and Gade A 2009 Biotechnol. Adv. 27 76CrossRefGoogle Scholar
  20. 20.
    Medeiros S F, Santos A M, Fessi H and Elaissari A 2011 Int. J. Pharm. 403 139CrossRefGoogle Scholar
  21. 21.
    Yu J K, Sang M R, Sudeok K, Hyun J Y, Min S H, Kangseok L et al 2012 J. Mater. Chem. 22 25036CrossRefGoogle Scholar
  22. 22.
    Yu D and Xiaojin Z 2017 J. Nanopart. Res. 19 164CrossRefGoogle Scholar
  23. 23.
    Bastos V, Duarte I F, Santos C and Oliveira H 2017 J. Nanopart. Res. 19 163CrossRefGoogle Scholar
  24. 24.
    Laura E V and Carla E G 2017 J. Nanopart. Res. 19 156CrossRefGoogle Scholar
  25. 25.
    Adrian A W 2017 J. Nanopart. Res. 19 152CrossRefGoogle Scholar
  26. 26.
    Calvo P, Vila J J L and Alonso M J 1996 J. Pharm. Sci. 85 530CrossRefGoogle Scholar
  27. 27.
    Chander A, Dharmapuri G, Kalle A M and Paik P 2016 Nano-technology 29 125101Google Scholar
  28. 28.
    Veerasamy R, Xin T Z, Gunasagaran S, Xiang T W F, Yang E F C, Jeyakumar N et al 2011 J. Saudi Chem. Soc. 15 113CrossRefGoogle Scholar
  29. 29.
    Chander A and Gangappa D 2016 Mater. Today Proc. 3 3833CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  • Chander Amgoth
    • 1
  • Mohan Lakavathu
    • 2
  • D S D Suman Joshi
    • 3
  1. 1.School of Engineering Sciences and TechnologyUniversity of HyderabadHyderabadIndia
  2. 2.School of ChemistryUniversity of HyderabadHyderabadIndia
  3. 3.Department of BiotechnologyAcharya Nagarjuna UniversityGunturIndia

Personalised recommendations