Advertisement

Bulletin of Materials Science

, 41:158 | Cite as

Spin-orbit coupling in graphene, silicene and germanene: dependence on the configuration of full hydrogenation and fluorination

  • Ranber Singh
Article
  • 4 Downloads

Abstract

We investigate the effect of full hydrogenation and fluorination on the spin-orbit coupling (SOC) in graphene, silicene and germanene. In chair conformation, the fluorination of graphene increases the spin-orbit splitting (\(E_{\mathrm{so}})\), while the hydrogenation and fluorination of other structures reduce the \(E_{\mathrm{so}}\) at the \(\Gamma \)-point. In case of boat conformation, the hydrogenation and fluorination reduce the symmetry of honeycomb structure, which in turn remove the degeneracy of valence band maximum at the \(\Gamma \)-point. The change in band gaps due to SOC is very small in boat conformation structures as compared to that in the corresponding chair conformation structures.

Keywords

Halogenated graphene spin–orbit interactions 

References

  1. 1.
    Tombros N, Jozsa C, Popinciuc M, Jonkman H T and van Wees B J 2007 Nature 448 571CrossRefGoogle Scholar
  2. 2.
    Han W and Kawakami R K 2011 Phys. Rev. Lett. 107 047207CrossRefGoogle Scholar
  3. 3.
    Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801CrossRefGoogle Scholar
  4. 4.
    Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045CrossRefGoogle Scholar
  5. 5.
    Han W, Kawakami R K, Gmitra M and Fabian J 2014 Nat. Nanotech. 9 794CrossRefGoogle Scholar
  6. 6.
    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109CrossRefGoogle Scholar
  7. 7.
    Cahangirov S, Topsakal M, Aktürk E, Sahil H and Ciraci S 2009 Phys. Rev. Lett. 102 236804CrossRefGoogle Scholar
  8. 8.
    Houssa M, Scalise E, Sankaran K, Pourtois G, Afanas’ev V V and Stesmans A 2011 Appl. Phys. Lett. 98 223107CrossRefGoogle Scholar
  9. 9.
    Singh R 2017 Int. J. Mod. Phys. B 32 1850055CrossRefGoogle Scholar
  10. 10.
    Liu C-C, Feng W and Yao Y 2011 Phys. Rev. Lett. 107 076802CrossRefGoogle Scholar
  11. 11.
    Castro Neto A H and Guinea F 2009 Phys. Rev. Lett. 103 026804CrossRefGoogle Scholar
  12. 12.
    Weeks C, Hu J, Alicea J, Franz M and Wu R 2011 Phys. Rev. X 1 021001Google Scholar
  13. 13.
    Gmitra M, Kochan D and Fabian J 2013 Phys. Rev. Lett. 110 246602CrossRefGoogle Scholar
  14. 14.
    Nijamudheen A, Bhattacharjee R, Choudhury S and Datta A 2015 J. Phys. Chem. C 119 3802CrossRefGoogle Scholar
  15. 15.
    Jose D and Datta A 2014 Acc. Chem. Res. 47 593CrossRefGoogle Scholar
  16. 16.
    Singh R and Kroll P 2009 J. Phys.: Condens. Matter 21 196002Google Scholar
  17. 17.
    Baroni S, de Gironcoli S, Dal Corso A and Giannozzi P 2001 Rev. Mod. Phys. 73 515CrossRefGoogle Scholar
  18. 18.
    Vanderbilt D 1990 Phys. Rev. B 41 7892CrossRefGoogle Scholar
  19. 19.
    Perdew J P and Zunger A 1981 Phys. Rev. B 23 5048CrossRefGoogle Scholar
  20. 20.
    Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865CrossRefGoogle Scholar
  21. 21.
    Serrano J, Cardona M and Ruf T 2000 Solid State Commun. 113 411CrossRefGoogle Scholar
  22. 22.
    Huldt L and Staflin T 1958 Phys. Rev. Lett. 1 313CrossRefGoogle Scholar
  23. 23.
    Levinshtein M E, Rumyantsev S L and Shur M S 2001 (New York: Wiley) p 194Google Scholar
  24. 24.
    Sofo J O, Chaudhari A S and Barber G D 2007 Phys. Rev. B 75 153401CrossRefGoogle Scholar
  25. 25.
    Park S and Ruoff R S 2009 Nat. Nanotechnol. 4 217CrossRefGoogle Scholar
  26. 26.
    Elias D C, Nair R R, Mohiuddin T M G, Morozov S V, Blake P, Halsall M P et al 2009 Science 323 610CrossRefGoogle Scholar
  27. 27.
    Robinson J T, Burgess J S, Junkermeier C E, Badescu S C, Reinecke T L, Perkins F K et al 2010 Nano Lett. 10 3001CrossRefGoogle Scholar
  28. 28.
    Nair R R, Ren W, Jalil R, Riaz I, Kravets V G, Britnell L et al 2010 Small 6 2877CrossRefGoogle Scholar
  29. 29.
    Singh R and Bester G 2011 Phys. Rev. B 84 155427CrossRefGoogle Scholar
  30. 30.
    El Khalifi Y, Gil B, Mathieu H, Fukunaga T and Nakashima H 1989 Phys. Rev. B 39 13533CrossRefGoogle Scholar
  31. 31.
    Csontos D, Brusheim P, Zülicke U and Xu H Q 2009 Phys. Rev. B 79 155323CrossRefGoogle Scholar
  32. 32.
    Huo Y H, Witek B J, Kumar S, Cardenas J R, Zhang J X, Akopian N et al 2014 Nat. Phys. 10 46CrossRefGoogle Scholar
  33. 33.
    Moise T S, Guido L J and Barker R C 1993 Phys. Rev. B 47 6758CrossRefGoogle Scholar
  34. 34.
    Kuhn-Heinrich B, Popp M, Ossau W, Bangert E, Waag A and Landwehr G 1993 Semi. Sci. Tech. 8 1239CrossRefGoogle Scholar
  35. 35.
    Miller D A B, Chemla D S, Damen T C, Gossard A C, Wiegmann W, Wood T H et al 1985 Phys. Rev. B 32 1043CrossRefGoogle Scholar
  36. 36.
    Min H, Hill J E, Sinitsyn N A, Sahu B R, Kleinman L and MacDonald A H 2006 Phys. Rev. B 74 165310CrossRefGoogle Scholar
  37. 37.
    Yao Y, Ye F, Qi X-L, Zhang S-C and Fang Z 2007 Phys. Rev. B 75 041401CrossRefGoogle Scholar
  38. 38.
    Nijamudheen A and Datta A 2013 J. Phys. Chem. A 117 8506CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Department of PhysicsSri Guru Gobind Singh CollegeChandigarhIndia

Personalised recommendations