2D molecular precursor for a one-pot synthesis of semiconducting metal sulphide nanocrystals

  • Abhijit Bera
  • Bhagavatula L V PrasadEmail author


2D molecular materials, namely, metal alkyl thiolates, have been used as a single-source precursor for the synthesis of semiconducting metal sulphide nanocrystals (NCs) by thermal decomposition. These 2D molecular precursors have all the ingredients required for metal sulphide synthesis (metal source, sulphur source and protecting ligand). In this study, we demonstrate a simple and general ‘solvothermal decomposition’ approach for the synthesis of high-quality \(\hbox {Cu}_{2}\hbox {S}\), PbS, CdS, MnS and ZnS NCs. The size of the NC can also be controlled by changing the decomposition temperature. Furthermore, the optical properties of the NCs have also been studied.


Single-source precursor nanocrystal thermal decomposition optical properties 



AB thanks UGC, New Delhi, for research fellowship. We thank the Council of Scientific and Industrial Research (CSIR), New Delhi, for financial assistance through the 12th Five-Year Plan Project (CSC 0134).

Supplementary material

12034_2018_1639_MOESM1_ESM.doc (358 kb)
Supplementary material 1 (doc 357 KB)


  1. 1.
    Medintz I L, Uyeda H T, Goldman E R and Mattoussi H 2005 Nat. Mater.  4 435CrossRefGoogle Scholar
  2. 2.
    Brunchez M P, Moronne M, Gin P, Weiss S and Alivisatos A P 1998 Science  281 2013CrossRefGoogle Scholar
  3. 3.
    Chan W C and Nie W S 1998 Science  281 2016CrossRefGoogle Scholar
  4. 4.
    Talapin D V, Lee J S, Kovalenko M V and Shevchenko E V 2010 Chem. Rev.  110 389CrossRefGoogle Scholar
  5. 5.
    Filankembo A, Giorgio S, Lisiecki I and Pileni M P 2003 J. Phys. Chem. B  107 7492CrossRefGoogle Scholar
  6. 6.
    Pileni M P 1997 Langmuir  13 3266CrossRefGoogle Scholar
  7. 7.
    Chen X B, Li C, Gratzel M, Kostecki R and Mao S S 2012 Chem. Soc. Rev.  41 7909CrossRefGoogle Scholar
  8. 8.
    Sakamoto T, Sunamura H, Kawaura H, Hasegawa T, Nakayama T and Aonob M 2003 Appl. Phys. Lett.  82 3032CrossRefGoogle Scholar
  9. 9.
    Hu J, Li L S, Yang W, Manna L, Wang L W and Alivisatos A P 2001 Science  292 2060CrossRefGoogle Scholar
  10. 10.
    Park J, Joo J, Kwon S G, Jang Y and Hyeon T 2007 Angew. Chem. Int. Ed.  46 4630CrossRefGoogle Scholar
  11. 11.
    Lee S M, Jun Y W, Cho S N and Cheon J 2002 J. Am. Chem. Soc.  124 11244CrossRefGoogle Scholar
  12. 12.
    Lee S M, Cho S N and Cheon J 2003 Adv. Mater.  15 441CrossRefGoogle Scholar
  13. 13.
    Aldana J, Lavelle N, Wang Y and Peng X 2005 J. Am. Chem. Soc.  127 2496CrossRefGoogle Scholar
  14. 14.
    Chen L, Chen Y B and Wu L M 2004 J. Am. Chem. Soc.  126 16334CrossRefGoogle Scholar
  15. 15.
    Yu J H, Joo J, Park H M, Baik S I, Kim Y W, Kim S C et al 2005 J. Am. Chem. Soc.  127 5662CrossRefGoogle Scholar
  16. 16.
    Lu Q, Gao F and Zhao D 2002 Nano Lett.  2 725CrossRefGoogle Scholar
  17. 17.
    Murray C, Norris D J and Bawendi M G 1993 J. Am. Chem. Soc.   115 8706CrossRefGoogle Scholar
  18. 18.
    Busupalli B, Kummara S, Kumaraswamy G and Prasad B L V 2015 Chem. Mater.   26 3436CrossRefGoogle Scholar
  19. 19.
    Choi S H, An K, Kim E G, Yu J H, Kim J H and Hyeon T 2009 Adv. Funct. Mater.   19 1645CrossRefGoogle Scholar
  20. 20.
    Wu W Y, Chakrabortty S, Chang C K L, Guchhait A, Lin M and Chan Y 2014 Chem. Mater.  26 6120CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Physical/Materials Chemistry DivisionNational Chemical Laboratory (CSIR-NCL)PuneIndia

Personalised recommendations