Advertisement

Thermal and curl properties of PET/PP blend fibres compatibilized with EAG ternary copolymer

  • Yong Wan Park
  • Mira Park
  • Hak Yong Kim
  • Hwan Chul Kim
  • Jong Cheol Lim
  • Fan-Long Jin
  • Soo-Jin Park
Article
  • 37 Downloads

Abstract

Blends of polyethylene terephthalate (PET)/polypropylene (PP) and the ternary copolymer ethylene–acrylic ester–glycidyl methacrylate (EAG) as the compatibilizer were prepared using a twin-screw extruder. The thermal properties, densities and morphologies of the blends were determined using various techniques. Next, PET/PP blend fibres were prepared using a melt–spinning system, and their curl properties were investigated. Scanning electron microscopy (SEM) results showed that the number of PP particles in the PET matrix and size of the PP phase decreased as the EAG content increased. The melting temperature \((T_{\mathrm{m}})\) and cooling crystallization \((T_{\mathrm{cc}})\) values of PP in the PET/PP blends decreased significantly after the addition of 1% EAG. The density of the PET/PP blend fibres decreased significantly with increase in the EAG and PP contents. After curl formation, the curl length of PP in the fibres was shorter than that of PET.

Keywords

PET PP compatibilizer thermal properties curl 

Notes

Acknowledgements

This work was supported by the Industrial Strategic Technology Development Program (10050953) funded by the Ministry of Trade, Industry & Energy (MI, Korea).

References

  1. 1.
    Elabid A E A, Zhang J, Shi J, Guo Y, Ding K and Zhang J 2016 Appl. Surf. Sci. 375 26CrossRefGoogle Scholar
  2. 2.
    Lepers J C, Favis B D and Tabar R J 1997 J. Polym. Sci. B: Polym. Phys. 35 2271CrossRefGoogle Scholar
  3. 3.
    Fu J H, Chen X D, Xu Q J, Wang R Y and Wang X J 2016 Polym. Compos. 37 1167CrossRefGoogle Scholar
  4. 4.
    Si X, Guo L, Wang Y and Lau K 2008 Compos. Sci. Technol. 68 2943CrossRefGoogle Scholar
  5. 5.
    Inuwa I M, Hassan A, Wang D Y, Samsudin S A, Haafiz M K M, Wong S L et al 2014 Polym. Degrad. Stab. 110 137CrossRefGoogle Scholar
  6. 6.
    Bui T T L, Nguyen D A, Ho S V and Uong H T N 2016 J. Appl. Polym. Sci. 133 43920Google Scholar
  7. 7.
    Inuwa I M, Hassan A, Samsudin S A, Kassim M H M and Jawaid M 2014 Polym. Compos. 35 2029CrossRefGoogle Scholar
  8. 8.
    Inuwa I M, Hassan A, Samsudin S A, Haafiz M K M and Jawaid M 2017 J. Vinyl Addit. Technol. 23 45CrossRefGoogle Scholar
  9. 9.
    Papadopoulou C P and Kalfoglou N K 2000 Polymer 41 2543CrossRefGoogle Scholar
  10. 10.
    Calcagno C I W, Mariani C M, Teixeira S R and Mauler R S 2008 Compos. Sci. Technol. 68 2193CrossRefGoogle Scholar
  11. 11.
    Entezam M, Khonakdar H A, Yousefi A A, Jafari S H, Wagenknecht U, Heinrich G et al 2012 Macromol. Mater. Eng. 297 312CrossRefGoogle Scholar
  12. 12.
    Akbari M, Zadhoush A and Haghighat M 2007 J. Appl. Polym. Sci. 104 3986CrossRefGoogle Scholar
  13. 13.
    Kim H C, Kim D H, Park J, Lim J C and Park Y W 2009 Fiber. Polym. 10 594CrossRefGoogle Scholar
  14. 14.
    Champagne M F, Huneault M A, Row C and Peyrel W 1999 Polym. Eng. Sci. 39 976CrossRefGoogle Scholar
  15. 15.
    Yazdani-Pedram M, Vega H, Retuert J and Quijada R 2003 Polym. Eng. Sci. 43 960CrossRefGoogle Scholar
  16. 16.
    Souza A M C and Caldeira C B 2015 J. Appl. Polym. Sci. 132 41892CrossRefGoogle Scholar
  17. 17.
    Heino M, Kirjava J, Hietaoja P and Seppälä J 1997 J. Appl. Polym. Sci. 65 241CrossRefGoogle Scholar
  18. 18.
    Friedrich K, Evstatiev M, Fakirov S, Evstatiev O, Ishii M and Harrass M 2005 Compos. Sci. Technol. 65 107CrossRefGoogle Scholar
  19. 19.
    Ershad-Langroudi A, Jafarzadeh-Dogouri F, Razavi-Nouri M and Oromiehie A 2008 J. Appl. Polym. Sci. 110 1979CrossRefGoogle Scholar
  20. 20.
    Itim B and Philip M 2015 Polym. Degrad. Stab. 117 84CrossRefGoogle Scholar
  21. 21.
    Yi X, Xu L, Wang Y L, Zhong G J, Ji X and Li Z M 2010 Eur. Polym. J. 46 719CrossRefGoogle Scholar
  22. 22.
    Mostofi N, Nazockdast H and Mohammadigoushki H 2009 J. Appl. Polym. Sci. 114 3737CrossRefGoogle Scholar
  23. 23.
    Rizvi A, Park C B and Favis B D 2015 Polymer 68 83CrossRefGoogle Scholar
  24. 24.
    Bang H J, Kim H Y, Jin F L and Park S J 2011 J. Ind. Eng. Chem. 17 805CrossRefGoogle Scholar
  25. 25.
    Bang H J, Kim H Y, Jin F L and Park S J 2011 Bull. Korean Chem. Soc. 32 541CrossRefGoogle Scholar
  26. 26.
    Park Y W, Song I J and Kim H C 2014 Fiber. Polym. 15 1078CrossRefGoogle Scholar
  27. 27.
    Chu K H, Park M, Kim H Y, Jin F L and Park S J 2014 Bull. Korean Chem. Soc. 35 1901CrossRefGoogle Scholar
  28. 28.
    Ho Y S, Kim H Y, Jin F L and Park S J 2012 Polym. Eng. Sci. 52 149CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  • Yong Wan Park
    • 1
  • Mira Park
    • 2
  • Hak Yong Kim
    • 3
  • Hwan Chul Kim
    • 2
  • Jong Cheol Lim
    • 4
  • Fan-Long Jin
    • 5
  • Soo-Jin Park
    • 6
  1. 1.Korea Institute of Convergence TextileIksanRepublic of Korea
  2. 2.Department of Organic Materials and Fiber EngineeringChonbuk National UniversityJeonjuRepublic of Korea
  3. 3.Department of BIN Convergence TechnologyChonbuk National UniversityJeonjuRepublic of Korea
  4. 4.Uno & Company Co. Ltd.WanjuRepublic of Korea
  5. 5.Department of Polymer MaterialsJilin Institute of Chemical TechnologyJilin CityPeople’s Republic of China
  6. 6.Department of ChemistryInha UniversityNam-gu, IncheonSouth Korea

Personalised recommendations