Advertisement

Synthesis, characterization and dielectric properties of \(\hbox {TiO}_{2}\)\(\hbox {CeO}_{2}\) ceramic nanocomposites at low titania concentration

  • Tokeer Ahmad
  • Mohd Shahazad
  • Mohd Ubaidullah
  • Jahangeer Ahmed
Article
  • 48 Downloads

Abstract

\(\hbox {TiO}_{2(x)}\)\(\hbox {CeO}_{2(1-x)}\) nanocomposites were prepared at low \(\hbox {TiO}_{2}\) composition of 5, 10, 15 and 20%, by using \(\hbox {TiO}_{2}\) and \(\hbox {CeO}_{2}\) nanoparticles obtained by polymeric citrate precursor method. These nanocomposites were characterized by using powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive analysis of X-rays and BET surface area studies. BET studies showed the specific surface area of as-prepared nanocomposites in the range of 239–288 \(\hbox {m}^{2}~\hbox {g}^{-1}\). Twenty percent of \(\hbox {TiO}_{2}\)-based titania–ceria nanocomposites have smallest average particle size of 30 nm and highest surface area of 288 \(\hbox {m}^{2}~\hbox {g}^{-1}\) among all the as-prepared nanocomposites. The dielectric characteristics were measured as a function of frequency and temperature. The dielectric constant of \(\hbox {TiO}_{2(x)}\)\(\hbox {CeO}_{2(1-x)}\) at room temperature was 35.6 (maximum) at 500 kHz for \(x = 0.20\).

Keywords

Polymeric citrate precursor method nanocomposites dielectric properties 

Notes

Acknowledgements

TA thanks CSIR, Govt. of India, for financial support of the research Project (No. 01(2897)/17/EMR-II). We thank CIF, Jamia Millia Islamia for XRD studies, and AIIMS, New Delhi, for TEM studies. MS thanks to UGC for providing fellowship.

References

  1. 1.
    Wilk G D, Wallace R M and Anthony J M 2001 J. Appl. Phys. 89 5243CrossRefGoogle Scholar
  2. 2.
    Zhang H and Banfield J F 2002 Chem. Mater. 14 4145CrossRefGoogle Scholar
  3. 3.
    Tayade R J, Surolia P K, Kulkarni R G and Jasra R V 2007 Sci. Technol. Adv. Mater. 8 455CrossRefGoogle Scholar
  4. 4.
    Al-Asbahi B A, Jumali M H H, Yap C C and Salleh M M 2013 J. Nanomater. 561534 1CrossRefGoogle Scholar
  5. 5.
    Ahmad R, Mohsin M, Ahmad T and Sardar M 2015 J. Hazard. Mater. 283 171CrossRefGoogle Scholar
  6. 6.
    Pang L X, Wang H, Zhou D and Yao X 2010 J. Mater. Sci. 21 1285Google Scholar
  7. 7.
    Nalwa H 1999 (London, UK: Academic Press)Google Scholar
  8. 8.
    Wypych A, Bobowska I, Tracz M, Opasinska A, Kadlubowski S, Krzywania-Kaliszewska A et al 2014 J. Nanomater.  124814 1CrossRefGoogle Scholar
  9. 9.
    Marinel S, Choi D H, Heuguet R, Agrawal D and Lanagan M 2013 Ceram. Int. 39 299CrossRefGoogle Scholar
  10. 10.
    Chiu F C and Lai C M 2010 J. Phys. D: Appl. Phys. 43 (075104) 1Google Scholar
  11. 11.
    Tarnuzzer R W, Colon J, Patil S and Seal S 2005 Nano Lett. 5 2573CrossRefGoogle Scholar
  12. 12.
    Aspinall H C, Bacsa J, Jones A C and Wrench J S 2011 Inorg. Chem. 50 11644CrossRefGoogle Scholar
  13. 13.
    Phokha S, Pinitsoontorn S, Chirawatkul P, Poo-Arporn Y and Maensiri S 2012 Nanoscale Res. Lett. 7 1CrossRefGoogle Scholar
  14. 14.
    Camargo P H C, Satyanarayana K G and Wypych F 2009 Mater. Res. 12 1CrossRefGoogle Scholar
  15. 15.
    Shanker V, Ahmad T and Ganguli A K 2006 J. Mater. Res. 21 816CrossRefGoogle Scholar
  16. 16.
    Nilchi A, Darzi S J, Mahjoub A R and Garmarodi S R 2010 Colloids Surf. A: Physicochem. Eng. Aspects 361 25CrossRefGoogle Scholar
  17. 17.
    Jongsomjit B, Kittiruangrayub S and Praserthdam P 2007 Mater. Chem. Phys. 105 14CrossRefGoogle Scholar
  18. 18.
    Rahulan K M, Vinitha G, Stephen L D and Kanakam C C 2013 Ceram. Int. 39 5281CrossRefGoogle Scholar
  19. 19.
    Gao X, Fierro J L G and Wachs I E 1999 Langmuir 15 3169CrossRefGoogle Scholar
  20. 20.
    Morks M F and Kobayashi A 2008 J. Mech. Behav. Biomed. Mater. 1 165CrossRefGoogle Scholar
  21. 21.
    Sulim I Y, Borysenko M V, Korduban O M and Gun’ko V M 2009 Appl. Surf. Sci. 255 7818CrossRefGoogle Scholar
  22. 22.
    Gun’ko V M, Sulym I Y, Borysenko M V and Turov V V 2013 Colloids Surf. A: Physicochem. Eng. Aspects 426 47CrossRefGoogle Scholar
  23. 23.
    Truffault L, Magnani M, Hammer P, Santilli C V and Pulcinelli S H 2015 Colloids Surf. A: Physicochem. Eng. Aspects 471 73CrossRefGoogle Scholar
  24. 24.
    Reddy B M and Khan A 2005 Catal. Surv. Asia 9 155CrossRefGoogle Scholar
  25. 25.
    Trovarelli A, Boaro M, Rocchini E, Leitenburg C and Dolcetti G 2001 J. Alloys Compd. 323–324 584CrossRefGoogle Scholar
  26. 26.
    Garciia M F, Arias A M, Juez A I, Belver C, Hungriia A B, Conesa J C et al 2000 J. Catal. 194 385CrossRefGoogle Scholar
  27. 27.
    Vaidya S, Ahmad T, Agarwal S and Ganguli A K 2007 J. Am. Ceram. Soc. 90 863CrossRefGoogle Scholar
  28. 28.
    Fang J, Bao H, He B, Wang F, Si D, Jiang Z et al 2007 J. Phys. Chem. C 111 19078CrossRefGoogle Scholar
  29. 29.
    Jiang B, Zhang S, Guo X, Jin B and Tian Y 2009 Appl. Surf. Sci. 255 5975CrossRefGoogle Scholar
  30. 30.
    Rao K N, Reddy B M and Park S 2010 Appl. Catal. B  100 472CrossRefGoogle Scholar
  31. 31.
    Reddy B M, Thrimurthulu G, Saikia P and Bharali P 2007 J. Mol. Catal. A: Chem. 275 167CrossRefGoogle Scholar
  32. 32.
    Reddy B M, Saikia P, Bharali P, Katta L and Thrimurthulu G 2009 Catal. Today 141 109CrossRefGoogle Scholar
  33. 33.
    Gao J, Guo J, Liang D, Hou Z, Fei J and Zheng X 2008 Int. J. Hydrogen Energy 33 5493CrossRefGoogle Scholar
  34. 34.
    Kim K D and Kim H T 2005 Colloids Surf. A: Physicochem. Eng. Aspects 255 131CrossRefGoogle Scholar
  35. 35.
    Gunawidjaja P N, Holland M A, Mountjoy G, Pickup D M, Newport R J and Smith M E 2003 Solid State Nucl. Magn. Reson. 23 88CrossRefGoogle Scholar
  36. 36.
    Pavasupree S, Suzuki Y, Art S P and Yoshikawa S 2005 J. Solid State Chem. 178 128CrossRefGoogle Scholar
  37. 37.
    Rynkowski J, Farbotko J, Touroude R and Hilaire L 2000 Appl. Catal. A: Gen. 203 335CrossRefGoogle Scholar
  38. 38.
    Yang S, Zhu W, Jiang Z, Chen X and Wang J 2006 Appl. Surf. Sci. 252 8499CrossRefGoogle Scholar
  39. 39.
    Liu Z, Guo B, Hong L and Jiang H 2005 J. Phys. Chem. Solids 66 161CrossRefGoogle Scholar
  40. 40.
    Periyat P, Baiju K V, Mukundan P, Pillai P K and Warrier K G K 2007 J. Sol-Gel Sci. Technol. 43 299CrossRefGoogle Scholar
  41. 41.
    Avellaneda C O, Bulhoes L O S and Pawlika A 2005 Thin Solid Films 471 100CrossRefGoogle Scholar
  42. 42.
    Verma A, Samanta S B, Bakhshi A K and Agnihotry S A 2004 Solid State Ionics 171 81CrossRefGoogle Scholar
  43. 43.
    Sun D L, Heusing S, Puetz J and Aegerter M A 2003 Solid State Ionics 165 181CrossRefGoogle Scholar
  44. 44.
    Ghodsi F E, Tepehan F Z and Tepehan G G 1999 Electrochim. Acta 44 3127CrossRefGoogle Scholar
  45. 45.
    Avellaneda C O and Pawlika A 1998 Thin Solid Films 335 245CrossRefGoogle Scholar
  46. 46.
    Keomany D, Petit J P and Deroo D 1995 Sol. Energ. Mater. Sol. C 36 397CrossRefGoogle Scholar
  47. 47.
    Trinchi A, Li Y X, Wlodarsky W, Kaciulis S, Pandolfi L, Viticoli S et al 2003 Sensor Actuat. B-Chem. B 95 145CrossRefGoogle Scholar
  48. 48.
    Ahmad T and Ganguli A K 2004 J. Mater. Res. 19 2905CrossRefGoogle Scholar
  49. 49.
    Ahmad T, Khatoon S, Coolahan K and Lofland S E 2013 J. Alloys Compd. 558 117CrossRefGoogle Scholar
  50. 50.
    Ahmad T and Phul R 2015 Solid State Phenomena 232 111CrossRefGoogle Scholar
  51. 51.
    Ahmad T, Lone I H, Ansari S G, Ahmed J, Ahamad T and Alshehri S M 2017 Mater. Des. 126 331CrossRefGoogle Scholar
  52. 52.
    Magesh G, Viswanathan B, Viswanath R P and Varadarajan T K 2009 Indian J. Chem. A 48 480Google Scholar
  53. 53.
    Xie J, Jiang D, Chen M, Li D, Zhu J, Lu X et al 2010 Colloids Surf. A 372 107CrossRefGoogle Scholar
  54. 54.
    Tong T, Zhang J, Tian B, Chen F, He D and Anpo M 2007 J. Colloid Interface Sci. 315 382CrossRefGoogle Scholar
  55. 55.
    Liu Y, Fang P, Cheng Y, Gao Y, Chen F, Liu Z et al 2013 Chem. Eng. J. 219 478CrossRefGoogle Scholar
  56. 56.
    Stengl V, Bakardjieva S and Murafa N 2009 Mater. Chem. Phys. 114 217CrossRefGoogle Scholar
  57. 57.
    Wani I A, Khatoon S, Ganguly A, Ahmed J, Ganguli A K and Ahmad T 2010 Mater. Res. Bull. 45 1033CrossRefGoogle Scholar
  58. 58.
    Li J G, Ikegami T, Wang Y and Mori T 2003 J. Am. Ceram. Soc. 86 915CrossRefGoogle Scholar
  59. 59.
    Waseda Y and Muramastu A 2004 Springer (ISBN 978-3-662-08863-0) 6Google Scholar
  60. 60.
    Azam A, Ahmad A S, Chaman M and Naqvi A H 2010 J. Appl. Phys. 108 (094329) 1Google Scholar
  61. 61.
    Bammannavar B K, Naik L R and Chougule B K 2008 J. Appl. Phys. 104 (064123) 1Google Scholar
  62. 62.
    Zamiril R, Ahangar H A, Kaushal A, Zakaria A, Zamiri1 G, Tobaldi D et al 2015 PLoS One 10 1Google Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Nanochemistry Laboratory, Department of ChemistryJamia Millia IslamiaNew DelhiIndia
  2. 2.Department of Chemistry, College of ScienceKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations