Advertisement

Precursor-dependent structural properties and antibacterial activity of copper oxide

  • Dipti V Dharmadhikari
  • Aparna S Phirange
  • Sushma G Sabharwal
  • Anjali A AthawaleEmail author
Article
  • 126 Downloads

Abstract

Inorganic metal oxide nanoparticles of zinc, copper and iron have been widely studied for their use in biomedical research due to their novel physical, chemical and biological properties. Present work involves studies on copper oxide nanoparticles for their antibacterial activity. Copper oxide (CuO) nanoparticles were synthesized by template-free hydrothermal synthesis using different precursors of copper (nitrate, acetate, chloride and sulphate). The samples were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) analysis, ultraviolet–visible (UV–Vis) absorption spectroscopy, scanning electron microscopy (SEM) and zeta potential analysis. The XRD patterns of the synthesized samples show presence of (−111) and (111) planes, which can be assigned to the monoclinic phase of CuO with the average crystallite size ranging between 43 and 49 nm. The SEM reveals rod-shaped morphology of the samples with a broad size distribution. The optical band gap calculated by UV–Vis absorption study ranges between 1.35 and 1.38 eV. The highly negative zeta potential values of the CuO synthesized with nitrate (−23.78 ± 0.95 mV), acetate (−11.86 ± 1.06 mV) and sulphate (−22.33 ± 0.85 mV) precursors of copper reveal the good colloidal stability of the synthesized particles. While CuO synthesized with copper (II) chloride shows intermediate stability with the zeta potential as 9.40 ± 1.86 mV. The antibacterial activity of the synthesized CuO was studied against human pathogens like Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) bacterial strains, which are proved to be efficient and precursor-dependent. The minimum inhibitory concentration of CuO against E. coli and S. aureus were found to be 0.15 and 0.1 mg \(\hbox {ml}^{-1}\), respectively. CuO nanoparticles exhibit good antibacterial activity, hence, it has potential for biomedical applications in preventing and treating infections.

Keywords

Template-free hydrothermal synthesis antibacterial activity structural characterization optical properties 

Notes

Acknowledgements

The author (DVD) gratefully acknowledges Central Instrumentation Facility, Department of Chemistry, Savitribai Phule Pune University for SEM analysis, Indian Institute of Technology, Kanpur, for zeta potential analysis and National Chemical Laboratory (NCL), Pune, for providing E. coli and S. aureus bacterial strains. Dr Kalpana Joshi (HOD) and Geetanjali Javir from Department of Biotechnology, Sinhgad College of Engineering, Pune, are acknowledged for helping in cytotoxicity studies. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

References

  1. 1.
    Thampi V A, Rajan S T, Anupriya K and Subramanian B 2015 J. Nanopart. Res. 17 57CrossRefGoogle Scholar
  2. 2.
    Khashan K S, Sulaiman G M and Abdulameer F A 2016 Arab. J. Sci. Eng.  41 301CrossRefGoogle Scholar
  3. 3.
    Chatterjee A K, Chakraborty R and Basu T 2014 Nanotechnology 25 135101CrossRefGoogle Scholar
  4. 4.
    Grigore M E, Biscu E R, Holban A M, Gestal M C and Grumezescu A M 2016 Pharmaceuticals 9 75CrossRefGoogle Scholar
  5. 5.
    Hu C, Li Pei, Zhang W, Che Yanhao, Sun Y, Chi F et al 2017 Mater. Res20 407CrossRefGoogle Scholar
  6. 6.
    Sayed F N and Polshettiwar V 2015 Sci. Rep. 5 9733CrossRefGoogle Scholar
  7. 7.
    Zhu H, Han D, Meng Z, Wu D and Zhang C 2011 Nanoscale Res. Lett. 6 181CrossRefGoogle Scholar
  8. 8.
    Phiwdang K, Suphankij S, Mekprasart W and Pecharapa W 2013 Energy Procedia  34 740CrossRefGoogle Scholar
  9. 9.
    Azimirad R, Safa S and Akhavan O 2015 Acta Phys. Pol. A 127 1727CrossRefGoogle Scholar
  10. 10.
    Gusattia M, Barroso G S, Maduro de Campos C E, Ribeiro de Souza D A, Almeida do Rosario J, Lima R B et al 2011 Mater. Res. 14 264Google Scholar
  11. 11.
    Kumar P S and Nesaraj A S 2015 J. Appl. Sci. Res. 11 297Google Scholar
  12. 12.
    Sinko K, Szabo G and Zrinyi M 2011 J. Nanosci. Nanotechnol. 11 1CrossRefGoogle Scholar
  13. 13.
    Rao N S and Rao M V 2015 Am. J. Mater. Sci. 5 66Google Scholar
  14. 14.
    Hufschmid R, Arami H, Ferguson M, Gonzales M, Teeman E, Brush L N et al 2015 Nanoscale 7 11142CrossRefGoogle Scholar
  15. 15.
    Hasany S F, Ahmed I, Rajan J and Rehman A 2012 Nanosci. Nanotechnol. 2 148Google Scholar
  16. 16.
    Nassar M Y and Ahmed I S 2012 Mater. Res. Bull. 47 2638CrossRefGoogle Scholar
  17. 17.
    Qi J Q, Tian H Y, Li L T and Chan H L 2007 Nanoscale Res. Lett. 2 107CrossRefGoogle Scholar
  18. 18.
    Yang Z, Xu J, Zhang W, Liu A and Tang S 2007 J. Solid State Chem. 180 1390CrossRefGoogle Scholar
  19. 19.
    Srivastava R, Prathap M U and Kore R 2011 Colloids Surf. A 392 271CrossRefGoogle Scholar
  20. 20.
    Dodoo-Arhin D, Leoni M and Scardi P 2012 Mol. Cryst. Liq. Cryst. 555 17CrossRefGoogle Scholar
  21. 21.
    Sutradhar P, Saha M and Maiti D 2014 J. Nanostruct. Chem. 4 86CrossRefGoogle Scholar
  22. 22.
    Mallick P and Sahu S 2012 Nanosci. Nanotechnol. 2 71CrossRefGoogle Scholar
  23. 23.
    Son D I, You C H and Kim T W 2009 Appl. Surf. Sci. 255 8794CrossRefGoogle Scholar
  24. 24.
    Wang H, Shen Q, Li X and Liu F 2009 Langmuir 25 3152CrossRefGoogle Scholar
  25. 25.
    Jadhav S, Gaikwad S, Nimse M and Rajbhoj A 2011 J. Clust. Sci. 22 121CrossRefGoogle Scholar
  26. 26.
    Zhao J G, Liu S J, Yang S H and Yang S G 2011 Appl. Surf. Sci. 257 9678CrossRefGoogle Scholar
  27. 27.
    Outokesh M, Hosseinpour M, Ahmadi S J, Mousavand T, Sadjadi S and Soltanian W 2011 Ind. Eng. Chem. Res. 50 3540CrossRefGoogle Scholar
  28. 28.
    Das D, Nath B C, Phukon P and Dolui S K 2013 Colloids Surf. B 2014 30Google Scholar
  29. 29.
    Azam A, Ahmed A S, Oves M, Khan M S and Memic A 2012 Int. J. Nanomed. 7 3527CrossRefGoogle Scholar
  30. 30.
    Papadimitropoulos G, Vourdas N, Vamvakas V E and Davazoglou D 2005 J. Phys. Conf. Ser. 10 182CrossRefGoogle Scholar
  31. 31.
    Kannaki K, Ramesh P S and Geetha D 2012 Int. J. Sci. Eng. Res. 3 1Google Scholar
  32. 32.
    El-Trass A, Elshamy H, El-Mehasseb I and El-Kemary M 2012 Appl. Surf. Sci. 258 2997CrossRefGoogle Scholar
  33. 33.
    Vellora V, Padil T and Cernik M 2013 Int. J. Nanomed. 8 889Google Scholar
  34. 34.
    Zou Y, Li Y, Zhang N and Liu X 2011 Bull. Mater. Sci. 34 967CrossRefGoogle Scholar
  35. 35.
    Rahimnejad S, Setayesh S R and Gholami M R 2008 J. Iran. Chem. Soc. 5 367CrossRefGoogle Scholar
  36. 36.
    Bouazizi N, Bargougui R, Oueslati A and Benslama R 2015 Adv. Mater. Lett. 6 158CrossRefGoogle Scholar
  37. 37.
    Bokare A, Sanap A, Pai M, Sabharwal S and Athawale A 2013 Colloids Surf. B 102 273CrossRefGoogle Scholar
  38. 38.
    Hassan M S, Amna T, Yang O B, El-Newehy M H, Al-Deyab S S and Khil M S 2012 Colloids Surf. B 97 201CrossRefGoogle Scholar
  39. 39.
    Cho W S, Duffin R, Thielbeer F, Bradley M, Megson I L, MacNee W et al 2012 Toxicol. Sci. 126 469CrossRefGoogle Scholar
  40. 40.
    Siddiqui M A, Alhadlaq H A, Ahmad J, Al-Khedhairy A A, Musarra J and Ahamed M 2013 PLoS ONE 8 69534Google Scholar
  41. 41.
    Yedurkar S M, Maurya C B and Mahanwar P A 2017 J. Mater. Environ. Sci. 8 1173Google Scholar
  42. 42.
    Sankar R, Manikandan P, Malarvizhi V, Fathima T, Shivashangari K S and Ravikumar V 2014 Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc. 121 746CrossRefGoogle Scholar
  43. 43.
    Behera M and Giri G 2014 Mater. Sci.-Poland 32 702Google Scholar
  44. 44.
    Khanehzaei H, Ahmad M B, Shameli K and Ajdari Z 2015 Int. J. Electrochem. Sci. 10 404Google Scholar
  45. 45.
    Manikandan A and Sathiyabama M 2015 J. Nanomed. Nanotechnol. 6 251Google Scholar
  46. 46.
    Anandan D and Rajan K S 2012 Asian J. Sci. Res. 5 218CrossRefGoogle Scholar
  47. 47.
    Wang M, Zhang W, Zheng X and Zhu P 2017 RSC Adv. 7 12144CrossRefGoogle Scholar
  48. 48.
    Chakraborty R, Sarkar R K, Chatterjee A K, Manju U, Chattopadhyay A P and Basu T 2015 Biochim. Biophys. Acta 1850 845CrossRefGoogle Scholar
  49. 49.
    Ren G, Hu D, Cheng E W, Vargas-Reus M A, Reip P and Allaker R 2009 Int. J. Antimicrob. Agents 33 587CrossRefGoogle Scholar
  50. 50.
    Fu P P, Xia Q, Hwang H M, Ray P C and Yu H 2014 J. Food Drug Anal. 22 64CrossRefGoogle Scholar
  51. 51.
    Naika H R, Lingaraju K, Manjunath K, Kumar D, Nagaraju G, Suresh D et al 2015 J. Taibah Univ. Sci. 9 7CrossRefGoogle Scholar
  52. 52.
    Giannousi K, Hatzivassiliou E, Mourdikoudis S, Vourlias G, Pantazaki A and Dendrinou-Samara C 2016 J. Inorg. Biochem. 164 82CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  • Dipti V Dharmadhikari
    • 1
  • Aparna S Phirange
    • 1
  • Sushma G Sabharwal
    • 1
  • Anjali A Athawale
    • 1
    Email author
  1. 1.Department of ChemistrySavitribai Phule Pune UniversityPuneIndia

Personalised recommendations