Advertisement

Synthesis, characterization and antimicrobial studies of bio silica nanoparticles prepared from Cynodon dactylon L.: a green approach

  • Reddla Hari Babu
  • Pulicherla Yugandhar
  • Nataru Savithramma
Article
  • 72 Downloads

Abstract

The present study reports on a green approach method for synthesis of silica nanoparticles (SiNPs) from Cynodon dactylon. These SiNPs were characterized by using ultraviolet–visible (UV–Vis) spectrophotometer, Fourier-transform infrared (FT-IR), dynamic light scattering (DLS) and Zeta, X-ray diffractometer (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM) and evaluated its growth inhibitory efficacy against different microorganisms. These SiNPs showed a colour change pattern upon synthesis and indicated a broad peak at 350 nm when analysed by UV–Vis spectrophotometer. FT-IR analysis revealed the presence of Si content, and the appearance of phytochemicals such as primary amines of proteins, phenols were mainly responsible for capping and stabilization of SiNPs. DLS and Zeta potential studies revealed average size of 62.1 nm and −23.3 mV zeta potential value of nanoparticles. An XRD study showed a broad peak at 22\(^{\circ }\) of \(2\theta \) value and confirmed that the nanoparticles were amorphous in nature with 60 nm average size of particles. Higher magnification studies with SEM and TEM analysis revealed that the particles were poly-dispersed, spherical in shape and have the size range from 7 to 80 nm without any agglomeration among the particles. Energy dispersive X-ray analysis showed a 52.84 weight percentage of silica content in the sample, which indicates towering purity of the sample. The obtained nanoparticles were tested for growth inhibitory activity on different microbial pathogens, resulting in potential inhibitory activity. This study concluded that the plant C. dactylon was an excellent and reliable green source for production of potential bio antimicrobial SiNPs.

Keywords

Cynodon dactylon green approach silica nanoparticles characterization antimicrobial studies 

Notes

Acknowledgements

We are highly grateful to UGC-BSR for providing RFSMS fellowships and highly thankful to Prof. C Suresh Reddy, Department of Chemistry, S.V. University for providing FT-IR analysis and JNTU, Hyderabad, for providing characterization facilities. Finally, greatly acknowledged to Prof. K Suma Kiran, Department of English, S.V. University, for assisting in language corrections.

References

  1. 1.
    Yugandhar P, Haribabu R and Savithramma N 2015 Biotech. 5 1031Google Scholar
  2. 2.
    Yugandhar P and Savithramma N 2015 Nano Biomed. Eng. 7 29Google Scholar
  3. 3.
    Yugandhar P and Savithramma N 2013 Int. J. Adv. Res. 1 89Google Scholar
  4. 4.
    Shende S, Ingle A P, Gade A and Rai M 2015 World J. Microbiol. Biotechnol. 31 865CrossRefGoogle Scholar
  5. 5.
    Gopinath K, Gowri S, Karthika V and Arumugam A 2014 J. Nanostruct. Chem. 4 1Google Scholar
  6. 6.
    Naseem T and Farrukh M A 2015 J. Chem. 2015 1CrossRefGoogle Scholar
  7. 7.
    Athinarayanan J, Periasamy V S, Alhazmi M, Alatiah K A and Alshatwi A A 2015 Ceram. Int. 41 275CrossRefGoogle Scholar
  8. 8.
    Yugandhar P and Savithramma N 2016 Appl. Nanosci. 6 223CrossRefGoogle Scholar
  9. 9.
    Bala N, Saha S, Chakraborty M, Maiti M, Das S, Basu R et al 2015 RSC Adv. 5 4993CrossRefGoogle Scholar
  10. 10.
    Fang I J and Trewyn B G 2012 Methods Enzymol. 508 41CrossRefGoogle Scholar
  11. 11.
    Hartono S B, Phuoc N T, Yu M, Jia Z, Monteiro M J, Qiao S et al 2014 J. Mater. Chem. B 2 718CrossRefGoogle Scholar
  12. 12.
    Koskimaki J, Tarkia M, Ahtola-Satila T, Saloranta L, Simola O, Forsback A P et al 2015 Biomed. Res. Int. 2015 715CrossRefGoogle Scholar
  13. 13.
    Botequim D, Maia J, Lino M M, Lopes L M, Simoes P N, Ilharco L M et al 2012 Langmuir 28 7646CrossRefGoogle Scholar
  14. 14.
    Shaji J and Varkey D 2013 J. Pharm. Invest. 43 405CrossRefGoogle Scholar
  15. 15.
    Jambhrunkar S, Qu Z, Popat A, Yang J, Noonan O, Acauan L et al 2014 Mol. Pharm. 11 3642CrossRefGoogle Scholar
  16. 16.
    Shanmugan S, Ramalingam R J and Mutharasu D 2015 Synth. React. Inorg. Met. Org. Nano-Met. Chem. 45 304CrossRefGoogle Scholar
  17. 17.
    Rahman I A and Padavettan V 2012 J. Nanomater. 2012 1CrossRefGoogle Scholar
  18. 18.
    Yu J H, Lee C W, Im S S and Lee J 2003 Rev. Adv. Mater. Sci. 4 55CrossRefGoogle Scholar
  19. 19.
    Yue R, Meng D, Ni Y, Jia Y, Liu G, Yang J et al 2013 Powder Technol. 235 909CrossRefGoogle Scholar
  20. 20.
    Sana N O, Kursungoz C, Tumtas Y, Yasa O, Ortac B and Tekinay T 2014 Particuology 17 29CrossRefGoogle Scholar
  21. 21.
    Lin C H, Chang J H, Yeh Y Q, Wu S H, Liu Y H and Mou C Y 2015 Nanoscale 7 9614CrossRefGoogle Scholar
  22. 22.
    Carter C B and Norton M G 2007Sols, gels, and organic chemistry (New York: Springer)Google Scholar
  23. 23.
    Creighton J R and Ho P 2001 Introduction to chemical vapor deposition (CVD) (Materials Park, Ohio: ASM International)Google Scholar
  24. 24.
    Klabunde K J 2001 Nanoscale materials in chemistry (New York: Wiley)CrossRefGoogle Scholar
  25. 25.
    Iravani S, Korbekandi H, Mirmohammadi S V and Zolfaghari B 2014 Res. Pharm. Sci. 9 385Google Scholar
  26. 26.
    Bharati D, Sonawane S A, Amrutkar M P, Undale V R, Wankhade A M and Bhosale A V 2009 Pharmacologyonline 2 1Google Scholar
  27. 27.
    Bhangale J and Acharya S 2014 Indian J. Exp. Biol. 52 215Google Scholar
  28. 28.
    Nagori B P and Solanki R 2011 Res. J. Med. Plant 5 508CrossRefGoogle Scholar
  29. 29.
    Mahesh N and Brahatheeswaran D 2007 Asian J. Biochem. 2 66Google Scholar
  30. 30.
    Jarald E E, Joshi S B and Jain D C 2008 Indian J. Exp. Biol. 46 660Google Scholar
  31. 31.
    Prabha D C and Annapoorani S 2009 J. Bio. Sci. 17 27Google Scholar
  32. 32.
    Kaup S R, Arunkumar N, Bernhardt L K, Vasavi R G, Shetty S S, Pai S R et al 2011 Genomic Med. Biomarkers Health Sci. 3 98CrossRefGoogle Scholar
  33. 33.
    Garg V K and Paliwal S K 2011 Int. J. Pharmacol. 7 370CrossRefGoogle Scholar
  34. 34.
    Abhishek B and Anita T 2012 J. Pharmacogn. Phytochem. 1 1Google Scholar
  35. 35.
    Abdullah S, Gobilik J and Chong K P 2013 In vitro antimicrobial activity of Cynodon dactylon (L.) Pers. (bermuda) against selected pathogens (Boston: Springer)CrossRefGoogle Scholar
  36. 36.
    Koushik O S, Srinivasa Babu P and Karthikeyan R 2015 Transl. Biomed. 6 3CrossRefGoogle Scholar
  37. 37.
    Adam F, Chew T S and Andas J 2011 J. Sol-Gel Sci. Technol. 59 580CrossRefGoogle Scholar
  38. 38.
    Cruickshank R 1986 Medical microbiology: a guide to diagnosis and control of infection (Livingston: Edinburgh)Google Scholar
  39. 39.
    Babu R H, Yugandhar P and Savithramma N 2015 Int. J. Plant Anim. Environ. Sci. 5 6Google Scholar
  40. 40.
    Djangang C N, Mlowe S, Njopwouo D and Revaprasadu N 2015 J. Appl. Chem. 4 1218Google Scholar
  41. 41.
    Alshatwi A A, Athinarayanan J and Periasamy V S 2015 Mater. Sci. Eng. C Mater. Biol. Appl. 47 8CrossRefGoogle Scholar
  42. 42.
    Kawahara T, Takeuchi Y, Wei G, Shirai K, Yamauchi T and Tsubokawa N 2009 Polymer J. 41 744CrossRefGoogle Scholar
  43. 43.
    Kumar C M K, Yugandhar P and Savithramma N 2016 J. Intercult. Ethnopharmacol. 5 79CrossRefGoogle Scholar
  44. 44.
    Kizer K W, Garb L G and Hine C H 1984 J. Occup. Med. 26 33CrossRefGoogle Scholar
  45. 45.
    Material safety data sheet (last accessed date: 22.04.2010) http://datasheets.scbt.com/sds/wpna/en/sc-253664.pdf

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  • Reddla Hari Babu
    • 1
  • Pulicherla Yugandhar
    • 1
  • Nataru Savithramma
    • 1
  1. 1.Department of BotanySri Venkateswara UniversityTirupatiIndia

Personalised recommendations