Effect of borax additive on the dielectric response of polypyrrole

  • Mehmet KiliçEmail author
  • Yaşar Karabul
  • Zeynep Güven Özdemir
  • Seda Erdönmez
  • Ayşe Evrim Bulgurcuoğlu
  • Serço Serkis Yeşilkaya
  • Mustafa Okutan
  • Orhan İçelli


The main aim of this study is to produce added polypyrrole (PPy) borax composites with high dielectric properties for technological applications. For this purpose, PPy–borax composites with different borax concentrations varying from 10 to 50 wt% have been prepared. To reveal their structural and morphological attributes, the composites have been characterized by Fourier-transform infrared spectroscopy and scanning electron microscopy. The real and imaginary parts of complex dielectric function, the imaginary component of complex electrical modulus and ac conductivity have been investigated at room temperature as a function of frequency in the range 100 Hz–15 MHz. It has been found that addition of borax increases the dielectric constant of pure PPy. In this respect, PPy–borax composites with the highest dielectric constant at low frequency may be utilized in charge storing devices. On the other hand, the dielectric loss is also very high in low-frequency region for the composites with high borax content. Exploiting this property, the material may also be used in decoupling capacitor applications. The relaxation mechanisms of the samples have also been determined as non-Debye type. The Nyquist curves of the samples have been analysed for calculating the grain and grain boundary resistance and capacitance values. In conclusion, borax has a promising potential to be used as a cheap and effective filler for improving the dielectric properties of PPy polymer.


Polypyrrole borax dielectric properties Nyquist plot non-Debye-type relaxation Cole–Cole equation 


  1. 1.
    Ballav N and Biswas M 2005 Polym. Int. 54 725CrossRefGoogle Scholar
  2. 2.
    Liu R and Liu Z 2009 Chin. Sci. Bull. 54 2028Google Scholar
  3. 3.
    Shown I, Ganguly A, Chen L and Chen K 2015 Energy Sci. Eng. 3 2CrossRefGoogle Scholar
  4. 4.
    Chang K C, Hsu C H, Peng C W, Huang Y Y, Yeh J M, Wan H P et al 2014 Express Polym. Lett. 8 207CrossRefGoogle Scholar
  5. 5.
    Jose J P, Mhetar V, Culligan S and Thomas S 2013 Sci. Adv. Mater. 5 385CrossRefGoogle Scholar
  6. 6.
    Kurachi K and Kise 1994 Polym. J. 26 1325Google Scholar
  7. 7.
    Wang Y, Sotzing G A and Weiss R A 2008 Chem. Mater. 20 2574CrossRefGoogle Scholar
  8. 8.
    Wanekaya A K, Lei Y, Bekyarova E, Chen W, Haddon R, Mulchandani A et al 2006 Electroanalysis 18 1047CrossRefGoogle Scholar
  9. 9.
    Cavdar A D, Mengeloğlu F and Karakus K 2015 Measurement 60 6CrossRefGoogle Scholar
  10. 10.
    Gumus O Y, Unal H I, Erol O and Sari B 2011 Polym. Compos. 32 418CrossRefGoogle Scholar
  11. 11.
    Lin H L, Liu Y F, Yu T L, Liu W H and Rwei S P 2005 Polymer 46 5541CrossRefGoogle Scholar
  12. 12.
    Gao S, Guo J and Nishinari K 2008 Carbohydr. Polym. 72 315CrossRefGoogle Scholar
  13. 13.
    Kim S H, Hyun K, Moon T S, Mitsumata T, Hong J S, Ahn K H et al 2005 Polymers 46 7156CrossRefGoogle Scholar
  14. 14.
    Basavaraja C, Veeranagouda Y, Lee K, Vishnuvardhan T and Pierson R 2010 J. Polym. Res. 17 233Google Scholar
  15. 15.
    Maity A and Sinha Ray S 2008 Macromol. Rapid Commun. 29 1582CrossRefGoogle Scholar
  16. 16.
    Nicho M and Hu H 2000 Sol. Energy Mater. Sol. Cells 63 423Google Scholar
  17. 17.
    Gao F, Hou X, Wang A, Chu G, Wu W, Chen J et al 2016 Particuology 26 73CrossRefGoogle Scholar
  18. 18.
    Karim M R, Lee C J, Chowdhury A S, Nahar N and Lee M S 2007 Mater. Lett. 61 1688CrossRefGoogle Scholar
  19. 19.
    Yang C, Liu P, Guo J and Wang Y 2010 Synth. Met. 160 592CrossRefGoogle Scholar
  20. 20.
    Heller G 1986 K C Buschbeck and K Niedenzu (eds) Boron and oxygen in: B boron compounds 3rd suppl vol 2 (Berlin: Springer-Verlag) p 166Google Scholar
  21. 21.
    Gönen M 2009 Nanosized zinc borate production (Izmir: Izmir Institute of Technology)Google Scholar
  22. 22.
    Koops C 1951 Phys. Rev. 83 121CrossRefGoogle Scholar
  23. 23.
    Maxwell J 1873 Electricity and magnetism (London: Oxford University Press)Google Scholar
  24. 24.
    Wagner K W 1913 Ann. Phys. 40 817CrossRefGoogle Scholar
  25. 25.
    Panwar V, Park J O, Park S H, Kumar S and Mehra R M 2010 J. Appl. Polym. Sci. 115 1305CrossRefGoogle Scholar
  26. 26.
    Cole K S and Cole R H 1941 J. Chem. Phys. 9 341CrossRefGoogle Scholar
  27. 27.
    Haase W and Wrobel S 2003 Relaxation phenomena: liquid crystals, magnetic systems, polymers, high-Tc superconductors, metallic glasses (Berlin: Springer-Verlag)CrossRefGoogle Scholar
  28. 28.
    Meller A 1983 Gmelin handbuch der anorganische chemie, boron compounds (Berlin: Springer-Verlag)Google Scholar
  29. 29.
    Vassilikou-Dova A and Kalogeras I M 2009 in: J D Menczel and R B Prime (eds) Thermal analysis of polymers: fundamentals and applications (New Jersey: Wiley) p 497Google Scholar
  30. 30.
    Adam N, Uğur A L, Altındal A and Erdoğmuş A 2014 Polyhedron 68 32CrossRefGoogle Scholar
  31. 31.
    El-Gamal S, Ismail A M and El-Mallaway R 2015 J. Mater. Sci.: Mater. Electron 26 7544Google Scholar
  32. 32.
    Qureshi A, Singhi N L, Shah S, Singh F and Avasthi D K 2008 J. Macromol. Sci. 45 265CrossRefGoogle Scholar
  33. 33.
    Liu J, Duan C G, Yin W G, Mei W N, Smith R W and Hardy J R 2003 J. Chem. Phys. 119 2812CrossRefGoogle Scholar
  34. 34.
    Angell C A 1990 Chem. Rev. 90 523CrossRefGoogle Scholar
  35. 35.
    Hodge I M, Ingram M D and West A R 1976 J. Electroanal. Chem. Interfacial Electrochem. 74 125CrossRefGoogle Scholar
  36. 36.
    Gerhardt R 1994 J. Phys. Chem. Solids 55 1491CrossRefGoogle Scholar
  37. 37.
    Prakash T, Prasad K P, Kavitha R, Ramasamy S and Murty B S 2007 J. Appl. Phys. 102 104104CrossRefGoogle Scholar
  38. 38.
    Mahamoud H, Louati B, Hlel F and Guidara K 2011 J. Alloys Compd. 509 6083CrossRefGoogle Scholar
  39. 39.
    Kaushal A, Olhero S M, Singh B, Fagg D P, Bdikin I and Ferreira J M F 2014 Ceram. Int. 40 10593CrossRefGoogle Scholar
  40. 40.
    Jonscher A K. 1983 Dielectric relaxation in solids (London: Chelsea Dielectrics Press)Google Scholar
  41. 41.
    Jonscher A K 1999 J. Phys. D: Appl. Phys. 32 R57CrossRefGoogle Scholar
  42. 42.
    Rao K S, Krishna P M, Prasad D M, Latha T S and Satyanarayana C 2008 Indian J. Eng. Mater. Sci. 15 215Google Scholar
  43. 43.
    Lee W K, Liu J F and Nowick A S 1991 Phys. Rev. Lett. 67 1559CrossRefGoogle Scholar
  44. 44.
    Ke S, Huang H, Ren L and Wang Y 2009 J. Appl. Phys. 105 096103CrossRefGoogle Scholar
  45. 45.
    Lunkenheimer P and Loidl A 2003 Phys. Rev. Lett. 91 207601CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  • Mehmet Kiliç
    • 1
    Email author
  • Yaşar Karabul
    • 1
  • Zeynep Güven Özdemir
    • 1
  • Seda Erdönmez
    • 1
  • Ayşe Evrim Bulgurcuoğlu
    • 1
  • Serço Serkis Yeşilkaya
    • 1
  • Mustafa Okutan
    • 1
  • Orhan İçelli
    • 1
  1. 1.Department of Physics, Faculty of Arts and SciencesYildiz Technical UniversityIstanbulTurkey

Personalised recommendations